scrfd.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import logging
  16. from .... import UltraInferModel, ModelFormat
  17. from .... import c_lib_wrap as C
  18. class SCRFD(UltraInferModel):
  19. def __init__(
  20. self,
  21. model_file,
  22. params_file="",
  23. runtime_option=None,
  24. model_format=ModelFormat.ONNX,
  25. ):
  26. """Load a SCRFD model exported by SCRFD.
  27. :param model_file: (str)Path of model file, e.g ./scrfd.onnx
  28. :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
  29. :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
  30. :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
  31. """
  32. # 调用基函数进行backend_option的初始化
  33. # 初始化后的option保存在self._runtime_option
  34. super(SCRFD, self).__init__(runtime_option)
  35. self._model = C.vision.facedet.SCRFD(
  36. model_file, params_file, self._runtime_option, model_format
  37. )
  38. # 通过self.initialized判断整个模型的初始化是否成功
  39. assert self.initialized, "SCRFD initialize failed."
  40. def predict(self, input_image, conf_threshold=0.7, nms_iou_threshold=0.3):
  41. """Detect the location and key points of human faces from an input image
  42. :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
  43. :param conf_threshold: confidence threashold for postprocessing, default is 0.7
  44. :param nms_iou_threshold: iou threashold for NMS, default is 0.3
  45. :return: FaceDetectionResult
  46. """
  47. return self._model.predict(input_image, conf_threshold, nms_iou_threshold)
  48. def disable_normalize(self):
  49. """
  50. This function will disable normalize in preprocessing step.
  51. """
  52. self._model.disable_normalize()
  53. def disable_permute(self):
  54. """
  55. This function will disable hwc2chw in preprocessing step.
  56. """
  57. self._model.disable_permute()
  58. # 一些跟SCRFD模型有关的属性封装
  59. # 多数是预处理相关,可通过修改如model.size = [640, 640]改变预处理时resize的大小(前提是模型支持)
  60. @property
  61. def size(self):
  62. """
  63. Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (640, 640)
  64. """
  65. return self._model.size
  66. @property
  67. def padding_value(self):
  68. # padding value, size should be the same as channels
  69. return self._model.padding_value
  70. @property
  71. def is_no_pad(self):
  72. # while is_mini_pad = false and is_no_pad = true, will resize the image to the set size
  73. return self._model.is_no_pad
  74. @property
  75. def is_mini_pad(self):
  76. # only pad to the minimum rectange which height and width is times of stride
  77. return self._model.is_mini_pad
  78. @property
  79. def is_scale_up(self):
  80. # if is_scale_up is false, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0
  81. return self._model.is_scale_up
  82. @property
  83. def stride(self):
  84. # padding stride, for is_mini_pad
  85. return self._model.stride
  86. @property
  87. def downsample_strides(self):
  88. """
  89. Argument for image postprocessing step,
  90. downsample strides (namely, steps) for SCRFD to generate anchors,
  91. will take (8,16,32) as default values
  92. """
  93. return self._model.downsample_strides
  94. @property
  95. def landmarks_per_face(self):
  96. """
  97. Argument for image postprocessing step, landmarks_per_face, default 5 in SCRFD
  98. """
  99. return self._model.landmarks_per_face
  100. @property
  101. def use_kps(self):
  102. """
  103. Argument for image postprocessing step,
  104. the outputs of onnx file with key points features or not, default true
  105. """
  106. return self._model.use_kps
  107. @property
  108. def max_nms(self):
  109. """
  110. Argument for image postprocessing step, the upperbond number of boxes processed by nms, default 30000
  111. """
  112. return self._model.max_nms
  113. @property
  114. def num_anchors(self):
  115. """
  116. Argument for image postprocessing step, anchor number of each stride, default 2
  117. """
  118. return self._model.num_anchors
  119. @size.setter
  120. def size(self, wh):
  121. assert isinstance(
  122. wh, (list, tuple)
  123. ), "The value to set `size` must be type of tuple or list."
  124. assert (
  125. len(wh) == 2
  126. ), "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
  127. len(wh)
  128. )
  129. self._model.size = wh
  130. @padding_value.setter
  131. def padding_value(self, value):
  132. assert isinstance(
  133. value, list
  134. ), "The value to set `padding_value` must be type of list."
  135. self._model.padding_value = value
  136. @is_no_pad.setter
  137. def is_no_pad(self, value):
  138. assert isinstance(
  139. value, bool
  140. ), "The value to set `is_no_pad` must be type of bool."
  141. self._model.is_no_pad = value
  142. @is_mini_pad.setter
  143. def is_mini_pad(self, value):
  144. assert isinstance(
  145. value, bool
  146. ), "The value to set `is_mini_pad` must be type of bool."
  147. self._model.is_mini_pad = value
  148. @is_scale_up.setter
  149. def is_scale_up(self, value):
  150. assert isinstance(
  151. value, bool
  152. ), "The value to set `is_scale_up` must be type of bool."
  153. self._model.is_scale_up = value
  154. @stride.setter
  155. def stride(self, value):
  156. assert isinstance(value, int), "The value to set `stride` must be type of int."
  157. self._model.stride = value
  158. @downsample_strides.setter
  159. def downsample_strides(self, value):
  160. assert isinstance(
  161. value, list
  162. ), "The value to set `downsample_strides` must be type of list."
  163. self._model.downsample_strides = value
  164. @landmarks_per_face.setter
  165. def landmarks_per_face(self, value):
  166. assert isinstance(
  167. value, int
  168. ), "The value to set `landmarks_per_face` must be type of int."
  169. self._model.landmarks_per_face = value
  170. @use_kps.setter
  171. def use_kps(self, value):
  172. assert isinstance(
  173. value, bool
  174. ), "The value to set `use_kps` must be type of bool."
  175. self._model.use_kps = value
  176. @max_nms.setter
  177. def max_nms(self, value):
  178. assert isinstance(value, int), "The value to set `max_nms` must be type of int."
  179. self._model.max_nms = value
  180. @num_anchors.setter
  181. def num_anchors(self, value):
  182. assert isinstance(
  183. value, int
  184. ), "The value to set `num_anchors` must be type of int."
  185. self._model.num_anchors = value