yolov5face.py 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import logging
  16. from .... import UltraInferModel, ModelFormat
  17. from .... import c_lib_wrap as C
  18. class YOLOv5Face(UltraInferModel):
  19. def __init__(
  20. self,
  21. model_file,
  22. params_file="",
  23. runtime_option=None,
  24. model_format=ModelFormat.ONNX,
  25. ):
  26. """Load a YOLOv5Face model exported by YOLOv5Face.
  27. :param model_file: (str)Path of model file, e.g ./yolov5face.onnx
  28. :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
  29. :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
  30. :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
  31. """
  32. # 调用基函数进行backend_option的初始化
  33. # 初始化后的option保存在self._runtime_option
  34. super(YOLOv5Face, self).__init__(runtime_option)
  35. self._model = C.vision.facedet.YOLOv5Face(
  36. model_file, params_file, self._runtime_option, model_format
  37. )
  38. # 通过self.initialized判断整个模型的初始化是否成功
  39. assert self.initialized, "YOLOv5Face initialize failed."
  40. def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
  41. """Detect the location and key points of human faces from an input image
  42. :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
  43. :param conf_threshold: confidence threashold for postprocessing, default is 0.25
  44. :param nms_iou_threshold: iou threashold for NMS, default is 0.5
  45. :return: FaceDetectionResult
  46. """
  47. return self._model.predict(input_image, conf_threshold, nms_iou_threshold)
  48. # 一些跟YOLOv5Face模型有关的属性封装
  49. # 多数是预处理相关,可通过修改如model.size = [1280, 1280]改变预处理时resize的大小(前提是模型支持)
  50. @property
  51. def size(self):
  52. """
  53. Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640,640]
  54. """
  55. return self._model.size
  56. @property
  57. def padding_value(self):
  58. # padding value, size should be the same as channels
  59. return self._model.padding_value
  60. @property
  61. def is_no_pad(self):
  62. # while is_mini_pad = false and is_no_pad = true, will resize the image to the set size
  63. return self._model.is_no_pad
  64. @property
  65. def is_mini_pad(self):
  66. # only pad to the minimum rectange which height and width is times of stride
  67. return self._model.is_mini_pad
  68. @property
  69. def is_scale_up(self):
  70. # if is_scale_up is false, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0
  71. return self._model.is_scale_up
  72. @property
  73. def stride(self):
  74. # padding stride, for is_mini_pad
  75. return self._model.stride
  76. @property
  77. def landmarks_per_face(self):
  78. """
  79. Argument for image postprocessing step, landmarks_per_face, default 5 in YOLOv5Face
  80. """
  81. return self._model.landmarks_per_face
  82. @size.setter
  83. def size(self, wh):
  84. assert isinstance(
  85. wh, (list, tuple)
  86. ), "The value to set `size` must be type of tuple or list."
  87. assert (
  88. len(wh) == 2
  89. ), "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
  90. len(wh)
  91. )
  92. self._model.size = wh
  93. @padding_value.setter
  94. def padding_value(self, value):
  95. assert isinstance(
  96. value, list
  97. ), "The value to set `padding_value` must be type of list."
  98. self._model.padding_value = value
  99. @is_no_pad.setter
  100. def is_no_pad(self, value):
  101. assert isinstance(
  102. value, bool
  103. ), "The value to set `is_no_pad` must be type of bool."
  104. self._model.is_no_pad = value
  105. @is_mini_pad.setter
  106. def is_mini_pad(self, value):
  107. assert isinstance(
  108. value, bool
  109. ), "The value to set `is_mini_pad` must be type of bool."
  110. self._model.is_mini_pad = value
  111. @is_scale_up.setter
  112. def is_scale_up(self, value):
  113. assert isinstance(
  114. value, bool
  115. ), "The value to set `is_scale_up` must be type of bool."
  116. self._model.is_scale_up = value
  117. @stride.setter
  118. def stride(self, value):
  119. assert isinstance(value, int), "The value to set `stride` must be type of int."
  120. self._model.stride = value
  121. @landmarks_per_face.setter
  122. def landmarks_per_face(self, value):
  123. assert isinstance(
  124. value, int
  125. ), "The value to set `landmarks_per_face` must be type of int."
  126. self._model.landmarks_per_face = value