model.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from abc import abstractmethod
  15. from copy import deepcopy
  16. from .inference import create_predictor, PaddlePredictorOption
  17. from .modules import (
  18. build_dataset_checker,
  19. build_trainer,
  20. build_evaluater,
  21. build_exportor,
  22. )
  23. from .utils.flags import NEW_PREDICTOR
  24. # TODO(gaotingquan): support _ModelBasedConfig
  25. def create_model(model_name, model_dir=None, *args, **kwargs):
  26. return _ModelBasedInference(
  27. model_name=model_name, model_dir=model_dir, *args, **kwargs
  28. )
  29. class _BaseModel:
  30. def check_dataset(self, *args, **kwargs):
  31. raise Exception("check_dataset is not supported!")
  32. def train(self, *args, **kwargs):
  33. raise Exception("train is not supported!")
  34. def evaluate(self, *args, **kwargs):
  35. raise Exception("evaluate is not supported!")
  36. def export(self, *args, **kwargs):
  37. raise Exception("export is not supported!")
  38. def predict(self, *args, **kwargs):
  39. raise Exception("predict is not supported!")
  40. def set_predict(self, *args, **kwargs):
  41. raise Exception("set_predict is not supported!")
  42. def __call__(self, *args, **kwargs):
  43. yield from self.predict(*args, **kwargs)
  44. class _ModelBasedInference(_BaseModel):
  45. def __init__(self, *args, **kwargs):
  46. self._predictor = create_predictor(*args, **kwargs)
  47. def predict(self, *args, **kwargs):
  48. yield from self._predictor(*args, **kwargs)
  49. def set_predictor(self, **kwargs):
  50. self._predictor.set_predictor(**kwargs)
  51. def __getattr__(self, name):
  52. if hasattr(self._predictor, name):
  53. return getattr(self._predictor, name)
  54. raise AttributeError(
  55. f"'{self.__class__.__name__}' object has no attribute '{name}'"
  56. )
  57. class _ModelBasedConfig(_BaseModel):
  58. def __init__(self, config=None, *args, **kwargs):
  59. super().__init__()
  60. self._config = config
  61. self._model_name = config.Global.model
  62. def _build_predictor(self):
  63. predict_kwargs = deepcopy(self._config.Predict)
  64. model_dir = predict_kwargs.pop("model_dir", None)
  65. device = self._config.Global.get("device")
  66. kernel_option = predict_kwargs.pop("kernel_option", {})
  67. kernel_option.update({"device": device})
  68. pp_option = PaddlePredictorOption(self._model_name, **kernel_option)
  69. if NEW_PREDICTOR:
  70. predictor = create_predictor(
  71. self._model_name, model_dir, pp_option=pp_option
  72. )
  73. else:
  74. model = self._model_name if model_dir is None else model_dir
  75. predictor = create_predictor(model, pp_option=pp_option)
  76. assert "input" in predict_kwargs
  77. return predict_kwargs, predictor
  78. def check_dataset(self):
  79. dataset_checker = build_dataset_checker(self._config)
  80. return dataset_checker.check()
  81. def train(self):
  82. trainer = build_trainer(self._config)
  83. trainer.train()
  84. def evaluate(self):
  85. evaluator = build_evaluater(self._config)
  86. return evaluator.evaluate()
  87. def export(self):
  88. exportor = build_exportor(self._config)
  89. return exportor.export()
  90. def predict(self):
  91. predict_kwargs, predictor = self._build_predictor()
  92. yield from predictor(**predict_kwargs)