resnet.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from .... import UltraInferModel, ModelFormat
  16. from .... import c_lib_wrap as C
  17. class ResNet(UltraInferModel):
  18. def __init__(
  19. self,
  20. model_file,
  21. params_file="",
  22. runtime_option=None,
  23. model_format=ModelFormat.ONNX,
  24. ):
  25. """Load a image classification model exported by torchvision.ResNet.
  26. :param model_file: (str)Path of model file, e.g resnet/resnet50.onnx
  27. :param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
  28. :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
  29. :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model, default is ONNX
  30. """
  31. # call super() to initialize the backend_option
  32. # the result of initialization will be saved in self._runtime_option
  33. super(ResNet, self).__init__(runtime_option)
  34. self._model = C.vision.classification.ResNet(
  35. model_file, params_file, self._runtime_option, model_format
  36. )
  37. # self.initialized shows the initialization of the model is successful or not
  38. assert self.initialized, "ResNet initialize failed."
  39. # Predict and return the inference result of "input_image".
  40. def predict(self, input_image, topk=1):
  41. """Classify an input image
  42. :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
  43. :param topk: (int)The topk result by the classify confidence score, default 1
  44. :return: ClassifyResult
  45. """
  46. return self._model.predict(input_image, topk)
  47. # Implement the setter and getter method for variables
  48. @property
  49. def size(self):
  50. """
  51. Returns the preprocess image size, default size = [224, 224];
  52. """
  53. return self._model.size
  54. @property
  55. def mean_vals(self):
  56. """
  57. Returns the mean value of normalization, default mean_vals = [0.485f, 0.456f, 0.406f];
  58. """
  59. return self._model.mean_vals
  60. @property
  61. def std_vals(self):
  62. """
  63. Returns the std value of normalization, default std_vals = [0.229f, 0.224f, 0.225f];
  64. """
  65. return self._model.std_vals
  66. @size.setter
  67. def size(self, wh):
  68. assert isinstance(
  69. wh, (list, tuple)
  70. ), "The value to set `size` must be type of tuple or list."
  71. assert (
  72. len(wh) == 2
  73. ), "The value to set `size` must contains 2 elements means [width, height], but now it contains {} elements.".format(
  74. len(wh)
  75. )
  76. self._model.size = wh
  77. @mean_vals.setter
  78. def mean_vals(self, value):
  79. assert isinstance(
  80. value, list
  81. ), "The value to set `mean_vals` must be type of list."
  82. self._model.mean_vals = value
  83. @std_vals.setter
  84. def std_vals(self, value):
  85. assert isinstance(
  86. value, list
  87. ), "The value to set `std_vals` must be type of list."
  88. self._model.std_vals = value