yolov5cls.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from .... import UltraInferModel, ModelFormat
  16. from .... import c_lib_wrap as C
  17. class YOLOv5ClsPreprocessor:
  18. def __init__(self):
  19. """Create a preprocessor for YOLOv5Cls"""
  20. self._preprocessor = C.vision.classification.YOLOv5ClsPreprocessor()
  21. def run(self, input_ims):
  22. """Preprocess input images for YOLOv5Cls
  23. :param: input_ims: (list of numpy.ndarray)The input image
  24. :return: list of FDTensor
  25. """
  26. return self._preprocessor.run(input_ims)
  27. @property
  28. def size(self):
  29. """
  30. Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [224, 224]
  31. """
  32. return self._preprocessor.size
  33. @size.setter
  34. def size(self, wh):
  35. assert isinstance(
  36. wh, (list, tuple)
  37. ), "The value to set `size` must be type of tuple or list."
  38. assert (
  39. len(wh) == 2
  40. ), "The value to set `size` must contains 2 elements means [width, height], but now it contains {} elements.".format(
  41. len(wh)
  42. )
  43. self._preprocessor.size = wh
  44. class YOLOv5ClsPostprocessor:
  45. def __init__(self):
  46. """Create a postprocessor for YOLOv5Cls"""
  47. self._postprocessor = C.vision.classification.YOLOv5ClsPostprocessor()
  48. def run(self, runtime_results, ims_info):
  49. """Postprocess the runtime results for YOLOv5Cls
  50. :param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
  51. :param: ims_info: (list of dict)Record input_shape and output_shape
  52. :return: list of ClassifyResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
  53. """
  54. return self._postprocessor.run(runtime_results, ims_info)
  55. @property
  56. def topk(self):
  57. """
  58. topk for postprocessing, default is 1
  59. """
  60. return self._postprocessor.topk
  61. @topk.setter
  62. def topk(self, topk):
  63. assert isinstance(topk, int), "The value to set `top k` must be type of int."
  64. self._postprocessor.topk = topk
  65. class YOLOv5Cls(UltraInferModel):
  66. def __init__(
  67. self,
  68. model_file,
  69. params_file="",
  70. runtime_option=None,
  71. model_format=ModelFormat.ONNX,
  72. ):
  73. """Load a YOLOv5Cls model exported by YOLOv5Cls.
  74. :param model_file: (str)Path of model file, e.g ./YOLOv5Cls.onnx
  75. :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
  76. :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
  77. :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
  78. """
  79. super(YOLOv5Cls, self).__init__(runtime_option)
  80. assert (
  81. model_format == ModelFormat.ONNX
  82. ), "YOLOv5Cls only support model format of ModelFormat.ONNX now."
  83. self._model = C.vision.classification.YOLOv5Cls(
  84. model_file, params_file, self._runtime_option, model_format
  85. )
  86. assert self.initialized, "YOLOv5Cls initialize failed."
  87. def predict(self, input_image):
  88. """Classify an input image
  89. :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
  90. :return: ClassifyResult
  91. """
  92. assert input_image is not None, "Input image is None."
  93. return self._model.predict(input_image)
  94. def batch_predict(self, images):
  95. """Classify a batch of input image
  96. :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
  97. :return list of ClassifyResult
  98. """
  99. return self._model.batch_predict(images)
  100. @property
  101. def preprocessor(self):
  102. """Get YOLOv5ClsPreprocessor object of the loaded model
  103. :return YOLOv5ClsPreprocessor
  104. """
  105. return self._model.preprocessor
  106. @property
  107. def postprocessor(self):
  108. """Get YOLOv5ClsPostprocessor object of the loaded model
  109. :return YOLOv5ClsPostprocessor
  110. """
  111. return self._model.postprocessor