nanodet_plus.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from .... import UltraInferModel, ModelFormat
  16. from .... import c_lib_wrap as C
  17. class NanoDetPlus(UltraInferModel):
  18. def __init__(
  19. self,
  20. model_file,
  21. params_file="",
  22. runtime_option=None,
  23. model_format=ModelFormat.ONNX,
  24. ):
  25. """Load a NanoDetPlus model exported by NanoDet.
  26. :param model_file: (str)Path of model file, e.g ./nanodet.onnx
  27. :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
  28. :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
  29. :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
  30. """
  31. # 调用基函数进行backend_option的初始化
  32. # 初始化后的option保存在self._runtime_option
  33. super(NanoDetPlus, self).__init__(runtime_option)
  34. self._model = C.vision.detection.NanoDetPlus(
  35. model_file, params_file, self._runtime_option, model_format
  36. )
  37. # 通过self.initialized判断整个模型的初始化是否成功
  38. assert self.initialized, "NanoDetPlus initialize failed."
  39. def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
  40. """Detect an input image
  41. :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
  42. :param conf_threshold: confidence threshold for postprocessing, default is 0.25
  43. :param nms_iou_threshold: iou threshold for NMS, default is 0.5
  44. :return: DetectionResult
  45. """
  46. return self._model.predict(input_image, conf_threshold, nms_iou_threshold)
  47. # 一些跟NanoDetPlus模型有关的属性封装
  48. # 多数是预处理相关,可通过修改如model.size = [416, 416]改变预处理时resize的大小(前提是模型支持)
  49. @property
  50. def size(self):
  51. """
  52. Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (320, 320)
  53. """
  54. return self._model.size
  55. @property
  56. def padding_value(self):
  57. # padding value, size should be the same as channels
  58. return self._model.padding_value
  59. @property
  60. def keep_ratio(self):
  61. # keep aspect ratio or not when perform resize operation. This option is set as false by default in NanoDet-Plus
  62. return self._model.keep_ratio
  63. @property
  64. def downsample_strides(self):
  65. # downsample strides for NanoDet-Plus to generate anchors, will take (8, 16, 32, 64) as default values
  66. return self._model.downsample_strides
  67. @property
  68. def max_wh(self):
  69. # for offsetting the boxes by classes when using NMS, default 4096
  70. return self._model.max_wh
  71. @property
  72. def reg_max(self):
  73. """
  74. reg_max for GFL regression, default 7
  75. """
  76. return self._model.reg_max
  77. @size.setter
  78. def size(self, wh):
  79. assert isinstance(
  80. wh, (list, tuple)
  81. ), "The value to set `size` must be type of tuple or list."
  82. assert (
  83. len(wh) == 2
  84. ), "The value to set `size` must contains 2 elements means [width, height], but now it contains {} elements.".format(
  85. len(wh)
  86. )
  87. self._model.size = wh
  88. @padding_value.setter
  89. def padding_value(self, value):
  90. assert isinstance(
  91. value, list
  92. ), "The value to set `padding_value` must be type of list."
  93. self._model.padding_value = value
  94. @keep_ratio.setter
  95. def keep_ratio(self, value):
  96. assert isinstance(
  97. value, bool
  98. ), "The value to set `keep_ratio` must be type of bool."
  99. self._model.keep_ratio = value
  100. @downsample_strides.setter
  101. def downsample_strides(self, value):
  102. assert isinstance(
  103. value, list
  104. ), "The value to set `downsample_strides` must be type of list."
  105. self._model.downsample_strides = value
  106. @max_wh.setter
  107. def max_wh(self, value):
  108. assert isinstance(
  109. value, float
  110. ), "The value to set `max_wh` must be type of float."
  111. self._model.max_wh = value
  112. @reg_max.setter
  113. def reg_max(self, value):
  114. assert isinstance(value, int), "The value to set `reg_max` must be type of int."
  115. self._model.reg_max = value