yolov5lite.py 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from .... import UltraInferModel, ModelFormat
  16. from .... import c_lib_wrap as C
  17. class YOLOv5Lite(UltraInferModel):
  18. def __init__(
  19. self,
  20. model_file,
  21. params_file="",
  22. runtime_option=None,
  23. model_format=ModelFormat.ONNX,
  24. ):
  25. """Load a YOLOv5Lite model exported by YOLOv5Lite.
  26. :param model_file: (str)Path of model file, e.g ./yolov5lite.onnx
  27. :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
  28. :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
  29. :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
  30. """
  31. # 调用基函数进行backend_option的初始化
  32. # 初始化后的option保存在self._runtime_option
  33. super(YOLOv5Lite, self).__init__(runtime_option)
  34. self._model = C.vision.detection.YOLOv5Lite(
  35. model_file, params_file, self._runtime_option, model_format
  36. )
  37. # 通过self.initialized判断整个模型的初始化是否成功
  38. assert self.initialized, "YOLOv5Lite initialize failed."
  39. def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
  40. """Detect an input image
  41. :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
  42. :param conf_threshold: confidence threshold for postprocessing, default is 0.25
  43. :param nms_iou_threshold: iou threshold for NMS, default is 0.5
  44. :return: DetectionResult
  45. """
  46. return self._model.predict(input_image, conf_threshold, nms_iou_threshold)
  47. # 一些跟YOLOv5Lite模型有关的属性封装
  48. # 多数是预处理相关,可通过修改如model.size = [1280, 1280]改变预处理时resize的大小(前提是模型支持)
  49. @property
  50. def size(self):
  51. """
  52. Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
  53. """
  54. return self._model.size
  55. @property
  56. def padding_value(self):
  57. # padding value, size should be the same as channels
  58. return self._model.padding_value
  59. @property
  60. def is_no_pad(self):
  61. # while is_mini_pad = false and is_no_pad = true, will resize the image to the set size
  62. return self._model.is_no_pad
  63. @property
  64. def is_mini_pad(self):
  65. # only pad to the minimum rectangle which height and width is times of stride
  66. return self._model.is_mini_pad
  67. @property
  68. def is_scale_up(self):
  69. # if is_scale_up is false, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0
  70. return self._model.is_scale_up
  71. @property
  72. def stride(self):
  73. # padding stride, for is_mini_pad
  74. return self._model.stride
  75. @property
  76. def max_wh(self):
  77. # for offsetting the boxes by classes when using NMS
  78. return self._model.max_wh
  79. @property
  80. def is_decode_exported(self):
  81. """
  82. whether the model_file was exported with decode module.
  83. The official YOLOv5Lite/export.py script will export ONNX file without decode module.
  84. Please set it 'true' manually if the model file was exported with decode module.
  85. False : ONNX files without decode module. True : ONNX file with decode module.
  86. default False
  87. """
  88. return self._model.is_decode_exported
  89. @property
  90. def anchor_config(self):
  91. return self._model.anchor_config
  92. @property
  93. def downsample_strides(self):
  94. """
  95. downsample strides for YOLOv5Lite to generate anchors, will take (8,16,32) as default values, might have stride=64.
  96. """
  97. return self._model.downsample_strides
  98. @size.setter
  99. def size(self, wh):
  100. assert isinstance(
  101. wh, (list, tuple)
  102. ), "The value to set `size` must be type of tuple or list."
  103. assert (
  104. len(wh) == 2
  105. ), "The value to set `size` must contains 2 elements means [width, height], but now it contains {} elements.".format(
  106. len(wh)
  107. )
  108. self._model.size = wh
  109. @padding_value.setter
  110. def padding_value(self, value):
  111. assert isinstance(
  112. value, list
  113. ), "The value to set `padding_value` must be type of list."
  114. self._model.padding_value = value
  115. @is_no_pad.setter
  116. def is_no_pad(self, value):
  117. assert isinstance(
  118. value, bool
  119. ), "The value to set `is_no_pad` must be type of bool."
  120. self._model.is_no_pad = value
  121. @is_mini_pad.setter
  122. def is_mini_pad(self, value):
  123. assert isinstance(
  124. value, bool
  125. ), "The value to set `is_mini_pad` must be type of bool."
  126. self._model.is_mini_pad = value
  127. @is_scale_up.setter
  128. def is_scale_up(self, value):
  129. assert isinstance(
  130. value, bool
  131. ), "The value to set `is_scale_up` must be type of bool."
  132. self._model.is_scale_up = value
  133. @stride.setter
  134. def stride(self, value):
  135. assert isinstance(value, int), "The value to set `stride` must be type of int."
  136. self._model.stride = value
  137. @max_wh.setter
  138. def max_wh(self, value):
  139. assert isinstance(
  140. value, float
  141. ), "The value to set `max_wh` must be type of float."
  142. self._model.max_wh = value
  143. @is_decode_exported.setter
  144. def is_decode_exported(self, value):
  145. assert isinstance(
  146. value, bool
  147. ), "The value to set `is_decode_exported` must be type of bool."
  148. self._model.is_decode_exported = value
  149. @anchor_config.setter
  150. def anchor_config(self, anchor_config_val):
  151. assert isinstance(
  152. anchor_config_val, list
  153. ), "The value to set `anchor_config` must be type of tuple or list."
  154. assert isinstance(
  155. anchor_config_val[0], list
  156. ), "The value to set `anchor_config` must be 2-dimensions tuple or list"
  157. self._model.anchor_config = anchor_config_val
  158. @downsample_strides.setter
  159. def downsample_strides(self, value):
  160. assert isinstance(
  161. value, list
  162. ), "The value to set `downsample_strides` must be type of list."
  163. self._model.downsample_strides = value