| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from tqdm import trange
- import numpy as np
- import collections
- import os
- import math
- import time
- def eval_segmentation(model, data_dir, batch_size=1):
- import cv2
- from .utils import Cityscapes
- from .utils import f1_score, calculate_area, mean_iou, accuracy, kappa
- assert os.path.isdir(data_dir), "The image_file_path:{} is not a directory.".format(
- data_dir
- )
- eval_dataset = Cityscapes(dataset_root=data_dir, mode="val")
- file_list = eval_dataset.file_list
- image_num = eval_dataset.num_samples
- num_classes = eval_dataset.num_classes
- intersect_area_all = 0
- pred_area_all = 0
- label_area_all = 0
- conf_mat_all = []
- twenty_percent_image_num = math.ceil(image_num * 0.2)
- start_time = 0
- end_time = 0
- average_inference_time = 0
- im_list = []
- label_list = []
- for image_label_path, i in zip(
- file_list, trange(image_num, desc="Inference Progress")
- ):
- if i == twenty_percent_image_num:
- start_time = time.time()
- im = cv2.imread(image_label_path[0])
- label = cv2.imread(image_label_path[1], cv2.IMREAD_GRAYSCALE)
- label_list.append(label)
- if batch_size == 1:
- result = model.predict(im)
- results = [result]
- else:
- im_list.append(im)
- # If the batch_size is not satisfied, the remaining pictures are formed into a batch
- if (i + 1) % batch_size != 0 and i != image_num - 1:
- continue
- results = model.batch_predict(im_list)
- if i == image_num - 1:
- end_time = time.time()
- average_inference_time = round(
- (end_time - start_time) / (image_num - twenty_percent_image_num), 4
- )
- for result, label in zip(results, label_list):
- pred = np.array(result.label_map).reshape(result.shape[0], result.shape[1])
- intersect_area, pred_area, label_area = calculate_area(
- pred, label, num_classes
- )
- intersect_area_all = intersect_area_all + intersect_area
- pred_area_all = pred_area_all + pred_area
- label_area_all = label_area_all + label_area
- im_list.clear()
- label_list.clear()
- class_iou, miou = mean_iou(intersect_area_all, pred_area_all, label_area_all)
- class_acc, oacc = accuracy(intersect_area_all, pred_area_all)
- kappa_res = kappa(intersect_area_all, pred_area_all, label_area_all)
- category_f1score = f1_score(intersect_area_all, pred_area_all, label_area_all)
- eval_metrics = collections.OrderedDict(
- zip(
- [
- "miou",
- "category_iou",
- "oacc",
- "category_acc",
- "kappa",
- "category_F1-score",
- "average_inference_time(s)",
- ],
- [
- miou,
- class_iou,
- oacc,
- class_acc,
- kappa_res,
- category_f1score,
- average_inference_time,
- ],
- )
- )
- return eval_metrics
|