| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/vision/common/processors/transform.h"
- #include "ultra_infer/vision/common/result.h"
- namespace ultra_infer {
- namespace vision {
- namespace detection {
- /*! @brief YOLOv5Lite model object used when to load a YOLOv5Lite model exported
- * by YOLOv5Lite.
- */
- class ULTRAINFER_DECL YOLOv5Lite : public UltraInferModel {
- public:
- /** \brief Set path of model file and the configuration of runtime.
- *
- * \param[in] model_file Path of model file, e.g ./yolov5lite.onnx
- * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
- * if the model format is ONNX, this parameter will be ignored \param[in]
- * custom_option RuntimeOption for inference, the default will use cpu, and
- * choose the backend defined in "valid_cpu_backends" \param[in] model_format
- * Model format of the loaded model, default is ONNX format
- */
- YOLOv5Lite(const std::string &model_file, const std::string ¶ms_file = "",
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::ONNX);
- ~YOLOv5Lite();
- virtual std::string ModelName() const { return "YOLOv5-Lite"; }
- /** \brief Predict the detection result for an input image
- *
- * \param[in] im The input image data, comes from cv::imread(), is a 3-D array
- * with layout HWC, BGR format \param[in] result The output detection result
- * will be written to this structure \param[in] conf_threshold confidence
- * threshold for postprocessing, default is 0.45 \param[in] nms_iou_threshold
- * iou threshold for NMS, default is 0.25 \return true if the prediction
- * successed, otherwise false
- */
- virtual bool Predict(cv::Mat *im, DetectionResult *result,
- float conf_threshold = 0.45,
- float nms_iou_threshold = 0.25);
- void UseCudaPreprocessing(int max_img_size = 3840 * 2160);
- /*! @brief
- Argument for image preprocessing step, tuple of (width, height), decide the
- target size after resize, size = {640, 640}
- */
- std::vector<int> size;
- // padding value, size should be the same as channels
- std::vector<float> padding_value;
- // only pad to the minimum rectangle which height and width is times of stride
- bool is_mini_pad;
- // while is_mini_pad = false and is_no_pad = true,
- // will resize the image to the set size
- bool is_no_pad;
- // if is_scale_up is false, the input image only can be zoom out,
- // the maximum resize scale cannot exceed 1.0
- bool is_scale_up;
- // padding stride, for is_mini_pad
- int stride;
- // for offsetting the boxes by classes when using NMS
- float max_wh;
- // downsample strides for YOLOv5Lite to generate anchors,
- // will take (8,16,32) as default values, might have stride=64.
- std::vector<int> downsample_strides;
- // anchors parameters, downsample_strides will take (8,16,32),
- // each stride has three anchors with width and height
- std::vector<std::vector<float>> anchor_config;
- /*! @brief
- whether the model_file was exported with decode module. The official
- YOLOv5Lite/export.py script will export ONNX file without
- decode module. Please set it 'true' manually if the model file
- was exported with decode module.
- false : ONNX files without decode module.
- true : ONNX file with decode module. default false.
- */
- bool is_decode_exported;
- private:
- // necessary parameters for GenerateAnchors to generate anchors when ONNX file
- // without decode module.
- struct Anchor {
- int grid0;
- int grid1;
- int stride;
- float anchor_w;
- float anchor_h;
- };
- bool Initialize();
- bool Preprocess(Mat *mat, FDTensor *output,
- std::map<std::string, std::array<float, 2>> *im_info);
- bool CudaPreprocess(Mat *mat, FDTensor *output,
- std::map<std::string, std::array<float, 2>> *im_info);
- bool Postprocess(FDTensor &infer_result, DetectionResult *result,
- const std::map<std::string, std::array<float, 2>> &im_info,
- float conf_threshold, float nms_iou_threshold);
- // the official YOLOv5Lite/export.py will export ONNX file without decode
- // module.
- // this function support the postporocess for ONNX file without decode module.
- // set the `is_decode_exported = false`, this function will work.
- bool PostprocessWithDecode(
- FDTensor &infer_result, DetectionResult *result,
- const std::map<std::string, std::array<float, 2>> &im_info,
- float conf_threshold, float nms_iou_threshold);
- void LetterBox(Mat *mat, const std::vector<int> &size,
- const std::vector<float> &color, bool _auto,
- bool scale_fill = false, bool scale_up = true,
- int stride = 32);
- // generate anchors for decoding when ONNX file without decode module.
- void GenerateAnchors(const std::vector<int> &size,
- const std::vector<int> &downsample_strides,
- std::vector<Anchor> *anchors, const int num_anchors = 3);
- // whether to inference with dynamic shape (e.g ONNX export with dynamic shape
- // or not.)
- // while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This
- // value will
- // auto check by ultra_infer after the internal Runtime already initialized.
- bool is_dynamic_input_;
- // CUDA host buffer for input image
- uint8_t *input_img_cuda_buffer_host_ = nullptr;
- // CUDA device buffer for input image
- uint8_t *input_img_cuda_buffer_device_ = nullptr;
- // CUDA device buffer for TRT input tensor
- float *input_tensor_cuda_buffer_device_ = nullptr;
- // Whether to use CUDA preprocessing
- bool use_cuda_preprocessing_ = false;
- // CUDA stream
- void *cuda_stream_ = nullptr;
- };
- } // namespace detection
- } // namespace vision
- } // namespace ultra_infer
|