| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from pathlib import Path
- from typing import Any, Dict, Optional
- from importlib import import_module
- from ...utils import errors
- from ..utils.official_models import official_models
- from .base import BasePredictor, BasicPredictor
- from .image_classification import ClasPredictor
- from .object_detection import DetPredictor
- from .keypoint_detection import KptPredictor
- from .text_detection import TextDetPredictor
- from .text_recognition import TextRecPredictor
- from .table_structure_recognition import TablePredictor
- from .formula_recognition import FormulaRecPredictor
- from .instance_segmentation import InstanceSegPredictor
- from .semantic_segmentation import SegPredictor
- from .image_feature import ImageFeaturePredictor
- from .ts_forecasting import TSFcPredictor
- from .ts_anomaly_detection import TSAdPredictor
- from .ts_classification import TSClsPredictor
- from .image_unwarping import WarpPredictor
- from .image_multilabel_classification import MLClasPredictor
- from .face_feature import FaceFeaturePredictor
- from .open_vocabulary_detection import OVDetPredictor
- from .open_vocabulary_segmentation import OVSegPredictor
- # from .table_recognition import TablePredictor
- # from .general_recognition import ShiTuRecPredictor
- from .anomaly_detection import UadPredictor
- # from .face_recognition import FaceRecPredictor
- from .multilingual_speech_recognition import WhisperPredictor
- from .video_classification import VideoClasPredictor
- from .video_detection import VideoDetPredictor
- module_3d_bev_detection = import_module(".3d_bev_detection", "paddlex.inference.models")
- BEVDet3DPredictor = getattr(module_3d_bev_detection, "BEVDet3DPredictor")
- def _create_hp_predictor(
- model_name, model_dir, device, config, hpi_params, *args, **kwargs
- ):
- try:
- from paddlex_hpi.models import HPPredictor
- except ModuleNotFoundError:
- raise RuntimeError(
- "The PaddleX HPI plugin is not properly installed, and the high-performance model inference features are not available."
- ) from None
- try:
- predictor = HPPredictor.get(model_name)(
- model_dir=model_dir,
- config=config,
- device=device,
- *args,
- hpi_params=hpi_params,
- **kwargs,
- )
- except errors.others.ClassNotFoundException:
- raise ValueError(
- f"{model_name} is not supported by the PaddleX HPI plugin."
- ) from None
- return predictor
- def create_predictor(
- model_name: str,
- model_dir: Optional[str] = None,
- device=None,
- pp_option=None,
- use_hpip: bool = False,
- hpi_params: Optional[Dict[str, Any]] = None,
- *args,
- **kwargs,
- ) -> BasePredictor:
- if model_dir is None:
- model_dir = check_model(model_name)
- else:
- assert Path(model_dir).exists(), f"{model_dir} is not exists!"
- model_dir = Path(model_dir)
- config = BasePredictor.load_config(model_dir)
- assert (
- model_name == config["Global"]["model_name"]
- ), f"Model name mismatch,please input the correct model dir."
- if use_hpip:
- return _create_hp_predictor(
- model_name=model_name,
- model_dir=model_dir,
- config=config,
- hpi_params=hpi_params,
- device=device,
- *args,
- **kwargs,
- )
- else:
- return BasicPredictor.get(model_name)(
- model_dir=model_dir,
- config=config,
- device=device,
- pp_option=pp_option,
- *args,
- **kwargs,
- )
- def check_model(model):
- if Path(model).exists():
- return Path(model)
- elif model in official_models:
- return official_models[model]
- else:
- raise Exception(
- f"The model ({model}) is no exists! Please using directory of local model files or model name supported by PaddleX!"
- )
|