mobilenetv2_prune_train.py 1.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344
  1. import os
  2. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  3. from paddlex.cls import transforms
  4. import paddlex as pdx
  5. veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
  6. pdx.utils.download_and_decompress(veg_dataset, path='./')
  7. train_transforms = transforms.Compose([
  8. transforms.RandomCrop(crop_size=224), transforms.RandomHorizontalFlip(),
  9. transforms.Normalize()
  10. ])
  11. eval_transforms = transforms.Compose([
  12. transforms.ResizeByShort(short_size=256),
  13. transforms.CenterCrop(crop_size=224), transforms.Normalize()
  14. ])
  15. train_dataset = pdx.datasets.ImageNet(
  16. data_dir='vegetables_cls',
  17. file_list='vegetables_cls/train_list.txt',
  18. label_list='vegetables_cls/labels.txt',
  19. transforms=train_transforms,
  20. shuffle=True)
  21. eval_dataset = pdx.datasets.ImageNet(
  22. data_dir='vegetables_cls',
  23. file_list='vegetables_cls/val_list.txt',
  24. label_list='vegetables_cls/labels.txt',
  25. transforms=eval_transforms)
  26. model = pdx.cls.MobileNetV2(num_classes=len(train_dataset.labels))
  27. model.train(
  28. num_epochs=10,
  29. train_dataset=train_dataset,
  30. train_batch_size=32,
  31. eval_dataset=eval_dataset,
  32. lr_decay_epochs=[4, 6, 8],
  33. learning_rate=0.025,
  34. pretrain_weights='output/mobilenetv2/best_model',
  35. save_dir='output/mobilenetv2_prune',
  36. sensitivities_file='./mobilenetv2.sensi.data',
  37. eval_metric_loss=0.05,
  38. use_vdl=True)