unet_prune.py 2.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压视盘分割数据集
  4. optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
  5. pdx.utils.download_and_decompress(optic_dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/transforms/transforms.md
  8. train_transforms = T.Compose([
  9. T.Resize(target_size=512),
  10. T.RandomHorizontalFlip(),
  11. T.Normalize(
  12. mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
  13. ])
  14. eval_transforms = T.Compose([
  15. T.Resize(target_size=512),
  16. T.Normalize(
  17. mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
  18. ])
  19. # 定义训练和验证所用的数据集
  20. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/datasets.md
  21. train_dataset = pdx.datasets.SegDataset(
  22. data_dir='optic_disc_seg',
  23. file_list='optic_disc_seg/train_list.txt',
  24. label_list='optic_disc_seg/labels.txt',
  25. transforms=train_transforms,
  26. shuffle=True)
  27. eval_dataset = pdx.datasets.SegDataset(
  28. data_dir='optic_disc_seg',
  29. file_list='optic_disc_seg/val_list.txt',
  30. label_list='optic_disc_seg/labels.txt',
  31. transforms=eval_transforms,
  32. shuffle=False)
  33. # 加载模型
  34. model = pdx.load_model('output/unet/best_model')
  35. # Step 1/3: 分析模型各层参数在不同的剪裁比例下的敏感度
  36. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/models/semantic_segmentation.md#analyze_sensitivity
  37. model.analyze_sensitivity(
  38. dataset=eval_dataset, batch_size=1, save_dir='output/unet/prune')
  39. # Step 2/3: 根据选择的FLOPs减小比例对模型进行剪裁
  40. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/models/semantic_segmentation.md#prune
  41. model.prune(pruned_flops=.2)
  42. # Step 3/3: 对剪裁后的模型重新训练
  43. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/models/semantic_segmentation.md#train
  44. # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/parameters.md
  45. model.train(
  46. num_epochs=10,
  47. train_dataset=train_dataset,
  48. train_batch_size=4,
  49. eval_dataset=eval_dataset,
  50. pretrain_weights=None,
  51. learning_rate=0.01,
  52. save_dir='output/unet/prune')