unet_qat.py 1.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压视盘分割数据集
  4. optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
  5. pdx.utils.download_and_decompress(optic_dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/transforms/transforms.md
  8. train_transforms = T.Compose([
  9. T.Resize(target_size=512),
  10. T.RandomHorizontalFlip(),
  11. T.Normalize(
  12. mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
  13. ])
  14. eval_transforms = T.Compose([
  15. T.Resize(target_size=512),
  16. T.Normalize(
  17. mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
  18. ])
  19. # 定义训练和验证所用的数据集
  20. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/datasets.md
  21. train_dataset = pdx.datasets.SegDataset(
  22. data_dir='optic_disc_seg',
  23. file_list='optic_disc_seg/train_list.txt',
  24. label_list='optic_disc_seg/labels.txt',
  25. transforms=train_transforms,
  26. shuffle=True)
  27. eval_dataset = pdx.datasets.SegDataset(
  28. data_dir='optic_disc_seg',
  29. file_list='optic_disc_seg/val_list.txt',
  30. label_list='optic_disc_seg/labels.txt',
  31. transforms=eval_transforms,
  32. shuffle=False)
  33. # 加载模型
  34. model = pdx.load_model('output/unet/best_model')
  35. # 在线量化
  36. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/models/semantic_segmentation.md#quant_aware_train
  37. model.quant_aware_train(
  38. num_epochs=5,
  39. train_dataset=train_dataset,
  40. train_batch_size=4,
  41. eval_dataset=eval_dataset,
  42. learning_rate=0.001,
  43. save_dir='output/unet/quant',
  44. use_vdl=True)