pipeline.py 3.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional
  15. import numpy as np
  16. from ...common.reader import ReadImage
  17. from ...common.batch_sampler import ImageBatchSampler
  18. from ...utils.pp_option import PaddlePredictorOption
  19. from ..base import BasePipeline
  20. # [TODO] 待更新models_new到models
  21. from ...models_new.image_multilabel_classification.result import MLClassResult
  22. class ImageMultiLabelClassificationPipeline(BasePipeline):
  23. """Image Multi Label Classification Pipeline"""
  24. entities = "image_multilabel_classification"
  25. def __init__(
  26. self,
  27. config: Dict,
  28. device: str = None,
  29. pp_option: PaddlePredictorOption = None,
  30. use_hpip: bool = False,
  31. hpi_params: Optional[Dict[str, Any]] = None,
  32. ) -> None:
  33. """
  34. Initializes the class with given configurations and options.
  35. Args:
  36. config (Dict): Configuration dictionary containing model and other parameters.
  37. device (str): The device to run the prediction on. Default is None.
  38. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  39. use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  40. hpi_params (Optional[Dict[str, Any]]): HPIP specific parameters. Default is None.
  41. """
  42. super().__init__(
  43. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
  44. )
  45. self.threshold = config["SubModules"]["ImageMultiLabelClassification"].get(
  46. "threshold", None
  47. )
  48. image_multilabel_classification_model_config = config["SubModules"][
  49. "ImageMultiLabelClassification"
  50. ]
  51. self.image_multilabel_classification_model = self.create_model(
  52. image_multilabel_classification_model_config
  53. )
  54. batch_size = image_multilabel_classification_model_config["batch_size"]
  55. def predict(
  56. self,
  57. input: str | list[str] | np.ndarray | list[np.ndarray],
  58. threshold: float | dict | list | None = None,
  59. **kwargs
  60. ) -> MLClassResult:
  61. """Predicts image classification results for the given input.
  62. Args:
  63. input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
  64. **kwargs: Additional keyword arguments that can be passed to the function.
  65. Returns:
  66. TopkResult: The predicted top k results.
  67. """
  68. yield from self.image_multilabel_classification_model(
  69. input=input,
  70. threshold=self.threshold if threshold is None else threshold,
  71. )