yolo_v3.py 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import math
  16. import tqdm
  17. import os.path as osp
  18. import numpy as np
  19. from multiprocessing.pool import ThreadPool
  20. import paddle.fluid as fluid
  21. from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
  22. from paddle.fluid.optimizer import ExponentialMovingAverage
  23. import paddlex.utils.logging as logging
  24. import paddlex
  25. import copy
  26. from paddlex.cv.transforms import arrange_transforms
  27. from paddlex.cv.datasets import generate_minibatch
  28. from .base import BaseAPI
  29. from collections import OrderedDict
  30. from .utils.detection_eval import eval_results, bbox2out
  31. import random
  32. random.seed(0)
  33. np.random.seed(0)
  34. class YOLOv3(BaseAPI):
  35. """构建YOLOv3,并实现其训练、评估、预测和模型导出。
  36. Args:
  37. num_classes (int): 类别数。默认为80。
  38. backbone (str): YOLOv3的backbone网络,取值范围为['DarkNet53',
  39. 'ResNet34', 'MobileNetV1', 'MobileNetV3_large']。默认为'MobileNetV1'。
  40. anchors (list|tuple): anchor框的宽度和高度,为None时表示使用默认值
  41. [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
  42. [59, 119], [116, 90], [156, 198], [373, 326]]。
  43. anchor_masks (list|tuple): 在计算YOLOv3损失时,使用anchor的mask索引,为None时表示使用默认值
  44. [[6, 7, 8], [3, 4, 5], [0, 1, 2]]。
  45. ignore_threshold (float): 在计算YOLOv3损失时,IoU大于`ignore_threshold`的预测框的置信度被忽略。默认为0.7。
  46. nms_score_threshold (float): 检测框的置信度得分阈值,置信度得分低于阈值的框应该被忽略。默认为0.01。
  47. nms_topk (int): 进行NMS时,根据置信度保留的最大检测框数。默认为1000。
  48. nms_keep_topk (int): 进行NMS后,每个图像要保留的总检测框数。默认为100。
  49. nms_iou_threshold (float): 进行NMS时,用于剔除检测框IOU的阈值。默认为0.45。
  50. label_smooth (bool): 是否使用label smooth。默认值为False。
  51. train_random_shapes (list|tuple): 训练时从列表中随机选择图像大小。默认值为[320, 352, 384, 416, 448, 480, 512, 544, 576, 608]。
  52. """
  53. def __init__(
  54. self,
  55. num_classes=80,
  56. backbone='MobileNetV1',
  57. with_dcn_v2=False,
  58. # YOLO Head
  59. anchors=None,
  60. anchor_masks=None,
  61. use_coord_conv=False,
  62. use_iou_aware=False,
  63. use_spp=False,
  64. use_drop_block=False,
  65. scale_x_y=1.0,
  66. # YOLOv3 Loss
  67. ignore_threshold=0.7,
  68. label_smooth=False,
  69. use_iou_loss=False,
  70. # NMS
  71. use_matrix_nms=False,
  72. nms_score_threshold=0.01,
  73. nms_topk=1000,
  74. nms_keep_topk=100,
  75. nms_iou_threshold=0.45,
  76. train_random_shapes=[
  77. 320, 352, 384, 416, 448, 480, 512, 544, 576, 608
  78. ]):
  79. self.init_params = locals()
  80. super(YOLOv3, self).__init__('detector')
  81. backbones = [
  82. 'DarkNet53', 'ResNet34', 'MobileNetV1', 'MobileNetV3_large',
  83. 'ResNet50_vd'
  84. ]
  85. assert backbone in backbones, "backbone should be one of {}".format(
  86. backbones)
  87. self.backbone = backbone
  88. self.num_classes = num_classes
  89. self.anchors = anchors
  90. self.anchor_masks = anchor_masks
  91. if anchors is None:
  92. self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
  93. [59, 119], [116, 90], [156, 198], [373, 326]]
  94. if anchor_masks is None:
  95. self.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  96. self.ignore_threshold = ignore_threshold
  97. self.nms_score_threshold = nms_score_threshold
  98. self.nms_topk = nms_topk
  99. self.nms_keep_topk = nms_keep_topk
  100. self.nms_iou_threshold = nms_iou_threshold
  101. self.label_smooth = label_smooth
  102. self.sync_bn = True
  103. self.train_random_shapes = train_random_shapes
  104. self.fixed_input_shape = None
  105. self.use_fine_grained_loss = False
  106. if use_coord_conv or use_iou_aware or use_spp or use_drop_block or use_iou_loss:
  107. self.use_fine_grained_loss = True
  108. self.use_coord_conv = use_coord_conv
  109. self.use_iou_aware = use_iou_aware
  110. self.use_spp = use_spp
  111. self.use_drop_block = use_drop_block
  112. self.use_iou_loss = use_iou_loss
  113. self.scale_x_y = scale_x_y
  114. self.max_height = 608
  115. self.max_width = 608
  116. self.use_matrix_nms = use_matrix_nms
  117. self.use_ema = False
  118. self.with_dcn_v2 = with_dcn_v2
  119. def _get_backbone(self, backbone_name):
  120. if backbone_name == 'DarkNet53':
  121. backbone = paddlex.cv.nets.DarkNet(norm_type='sync_bn')
  122. elif backbone_name == 'ResNet34':
  123. backbone = paddlex.cv.nets.ResNet(
  124. norm_type='sync_bn',
  125. layers=34,
  126. freeze_norm=False,
  127. norm_decay=0.,
  128. feature_maps=[3, 4, 5],
  129. freeze_at=0)
  130. elif backbone_name == 'MobileNetV1':
  131. backbone = paddlex.cv.nets.MobileNetV1(norm_type='sync_bn')
  132. elif backbone_name.startswith('MobileNetV3'):
  133. model_name = backbone_name.split('_')[1]
  134. backbone = paddlex.cv.nets.MobileNetV3(
  135. norm_type='sync_bn', model_name=model_name)
  136. elif backbone_name == 'ResNet50_vd':
  137. backbone = paddlex.cv.nets.ResNet(
  138. norm_type='sync_bn',
  139. layers=50,
  140. freeze_norm=False,
  141. norm_decay=0.,
  142. feature_maps=[3, 4, 5],
  143. freeze_at=0,
  144. variant='d',
  145. dcn_v2_stages=[5] if self.with_dcn_v2 else [])
  146. return backbone
  147. def build_net(self, mode='train'):
  148. model = paddlex.cv.nets.detection.YOLOv3(
  149. backbone=self._get_backbone(self.backbone),
  150. num_classes=self.num_classes,
  151. mode=mode,
  152. anchors=self.anchors,
  153. anchor_masks=self.anchor_masks,
  154. ignore_threshold=self.ignore_threshold,
  155. label_smooth=self.label_smooth,
  156. nms_score_threshold=self.nms_score_threshold,
  157. nms_topk=self.nms_topk,
  158. nms_keep_topk=self.nms_keep_topk,
  159. nms_iou_threshold=self.nms_iou_threshold,
  160. fixed_input_shape=self.fixed_input_shape,
  161. coord_conv=self.use_coord_conv,
  162. iou_aware=self.use_iou_aware,
  163. scale_x_y=self.scale_x_y,
  164. spp=self.use_spp,
  165. drop_block=self.use_drop_block,
  166. use_matrix_nms=self.use_matrix_nms,
  167. use_fine_grained_loss=self.use_fine_grained_loss,
  168. use_iou_loss=self.use_iou_loss,
  169. batch_size=self.batch_size_per_gpu
  170. if hasattr(self, 'batch_size_per_gpu') else 8)
  171. if mode == 'train' and self.use_iou_loss or self.use_iou_aware:
  172. model.max_height = self.max_height
  173. model.max_width = self.max_width
  174. inputs = model.generate_inputs()
  175. model_out = model.build_net(inputs)
  176. outputs = OrderedDict([('bbox', model_out[0])])
  177. if mode == 'train':
  178. self.optimizer.minimize(model_out)
  179. outputs = OrderedDict([('loss', model_out)])
  180. if self.use_ema:
  181. global_steps = _decay_step_counter()
  182. self.ema = ExponentialMovingAverage(
  183. self.ema_decay, thres_steps=global_steps)
  184. self.ema.update()
  185. return inputs, outputs
  186. def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
  187. lr_decay_epochs, lr_decay_gamma,
  188. num_steps_each_epoch):
  189. if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
  190. logging.error(
  191. "In function train(), parameters should satisfy: warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
  192. exit=False)
  193. logging.error(
  194. "See this doc for more information: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
  195. exit=False)
  196. logging.error(
  197. "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
  198. format(lr_decay_epochs[0] * num_steps_each_epoch, warmup_steps
  199. // num_steps_each_epoch))
  200. boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
  201. values = [(lr_decay_gamma**i) * learning_rate
  202. for i in range(len(lr_decay_epochs) + 1)]
  203. lr_decay = fluid.layers.piecewise_decay(
  204. boundaries=boundaries, values=values)
  205. lr_warmup = fluid.layers.linear_lr_warmup(
  206. learning_rate=lr_decay,
  207. warmup_steps=warmup_steps,
  208. start_lr=warmup_start_lr,
  209. end_lr=learning_rate)
  210. optimizer = fluid.optimizer.Momentum(
  211. learning_rate=lr_warmup,
  212. momentum=0.9,
  213. regularization=fluid.regularizer.L2DecayRegularizer(5e-04))
  214. return optimizer
  215. def train(self,
  216. num_epochs,
  217. train_dataset,
  218. train_batch_size=8,
  219. eval_dataset=None,
  220. save_interval_epochs=20,
  221. log_interval_steps=2,
  222. save_dir='output',
  223. pretrain_weights='IMAGENET',
  224. optimizer=None,
  225. learning_rate=1.0 / 8000,
  226. warmup_steps=1000,
  227. warmup_start_lr=0.0,
  228. lr_decay_epochs=[213, 240],
  229. lr_decay_gamma=0.1,
  230. use_ema=False,
  231. ema_decay=0.9998,
  232. metric=None,
  233. use_vdl=False,
  234. sensitivities_file=None,
  235. eval_metric_loss=0.05,
  236. early_stop=False,
  237. early_stop_patience=5,
  238. resume_checkpoint=None):
  239. """训练。
  240. Args:
  241. num_epochs (int): 训练迭代轮数。
  242. train_dataset (paddlex.datasets): 训练数据读取器。
  243. train_batch_size (int): 训练数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与显卡
  244. 数量之商为验证数据batch大小。默认值为8。
  245. eval_dataset (paddlex.datasets): 验证数据读取器。
  246. save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为20。
  247. log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为10。
  248. save_dir (str): 模型保存路径。默认值为'output'。
  249. pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
  250. 则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',
  251. 则自动下载在COCO数据集上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
  252. optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
  253. fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
  254. learning_rate (float): 默认优化器的学习率。默认为1.0/8000。
  255. warmup_steps (int): 默认优化器进行warmup过程的步数。默认为1000。
  256. warmup_start_lr (int): 默认优化器warmup的起始学习率。默认为0.0。
  257. lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[213, 240]。
  258. lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
  259. metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。
  260. use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
  261. sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
  262. 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
  263. eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
  264. early_stop (bool): 是否使用提前终止训练策略。默认值为False。
  265. early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
  266. 连续下降或持平,则终止训练。默认值为5。
  267. resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
  268. Raises:
  269. ValueError: 评估类型不在指定列表中。
  270. ValueError: 模型从inference model进行加载。
  271. """
  272. if not self.trainable:
  273. raise ValueError("Model is not trainable from load_model method.")
  274. if metric is None:
  275. if isinstance(train_dataset, paddlex.datasets.CocoDetection):
  276. metric = 'COCO'
  277. elif isinstance(train_dataset, paddlex.datasets.VOCDetection) or \
  278. isinstance(train_dataset, paddlex.datasets.EasyDataDet):
  279. metric = 'VOC'
  280. else:
  281. raise ValueError(
  282. "train_dataset should be datasets.VOCDetection or datasets.COCODetection or datasets.EasyDataDet."
  283. )
  284. assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
  285. self.metric = metric
  286. self.labels = train_dataset.labels
  287. # 构建训练网络
  288. if optimizer is None:
  289. # 构建默认的优化策略
  290. num_steps_each_epoch = train_dataset.num_samples // train_batch_size
  291. optimizer = self.default_optimizer(
  292. learning_rate=learning_rate,
  293. warmup_steps=warmup_steps,
  294. warmup_start_lr=warmup_start_lr,
  295. lr_decay_epochs=lr_decay_epochs,
  296. lr_decay_gamma=lr_decay_gamma,
  297. num_steps_each_epoch=num_steps_each_epoch)
  298. self.optimizer = optimizer
  299. self.use_ema = use_ema
  300. self.ema_decay = ema_decay
  301. self.batch_size_per_gpu = int(train_batch_size /
  302. paddlex.env_info['num'])
  303. if self.use_fine_grained_loss:
  304. for transform in train_dataset.transforms.transforms:
  305. if isinstance(transform, paddlex.det.transforms.Resize):
  306. self.max_height = transform.target_size
  307. self.max_width = transform.target_size
  308. break
  309. if train_dataset.transforms.batch_transforms is None:
  310. train_dataset.transforms.batch_transforms = list()
  311. define_random_shape = False
  312. for bt in train_dataset.transforms.batch_transforms:
  313. if isinstance(bt, paddlex.det.transforms.BatchRandomShape):
  314. define_random_shape = True
  315. if not define_random_shape:
  316. if isinstance(self.train_random_shapes,
  317. (list, tuple)) and len(self.train_random_shapes) > 0:
  318. train_dataset.transforms.batch_transforms.append(
  319. paddlex.det.transforms.BatchRandomShape(
  320. random_shapes=self.train_random_shapes))
  321. if self.use_fine_grained_loss:
  322. self.max_height = max(self.max_height,
  323. max(self.train_random_shapes))
  324. self.max_width = max(self.max_width,
  325. max(self.train_random_shapes))
  326. if self.use_fine_grained_loss:
  327. define_generate_target = False
  328. for bt in train_dataset.transforms.batch_transforms:
  329. if isinstance(bt, paddlex.det.transforms.GenerateYoloTarget):
  330. define_generate_target = True
  331. if not define_generate_target:
  332. train_dataset.transforms.batch_transforms.append(
  333. paddlex.det.transforms.GenerateYoloTarget(
  334. anchors=self.anchors,
  335. anchor_masks=self.anchor_masks,
  336. num_classes=self.num_classes,
  337. downsample_ratios=[32, 16, 8]))
  338. # 构建训练、验证、预测网络
  339. self.build_program()
  340. # 初始化网络权重
  341. self.net_initialize(
  342. startup_prog=fluid.default_startup_program(),
  343. pretrain_weights=pretrain_weights,
  344. save_dir=save_dir,
  345. sensitivities_file=sensitivities_file,
  346. eval_metric_loss=eval_metric_loss,
  347. resume_checkpoint=resume_checkpoint)
  348. # 训练
  349. self.train_loop(
  350. num_epochs=num_epochs,
  351. train_dataset=train_dataset,
  352. train_batch_size=train_batch_size,
  353. eval_dataset=eval_dataset,
  354. save_interval_epochs=save_interval_epochs,
  355. log_interval_steps=log_interval_steps,
  356. save_dir=save_dir,
  357. use_vdl=use_vdl,
  358. early_stop=early_stop,
  359. early_stop_patience=early_stop_patience)
  360. def evaluate(self,
  361. eval_dataset,
  362. batch_size=1,
  363. epoch_id=None,
  364. metric=None,
  365. return_details=False):
  366. """评估。
  367. Args:
  368. eval_dataset (paddlex.datasets): 验证数据读取器。
  369. batch_size (int): 验证数据批大小。默认为1。
  370. epoch_id (int): 当前评估模型所在的训练轮数。
  371. metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None,
  372. 根据用户传入的Dataset自动选择,如为VOCDetection,则metric为'VOC';
  373. 如为COCODetection,则metric为'COCO'。
  374. return_details (bool): 是否返回详细信息。
  375. Returns:
  376. tuple (metrics, eval_details) | dict (metrics): 当return_details为True时,返回(metrics, eval_details),
  377. 当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'或者’bbox_map‘,
  378. 分别表示平均准确率平均值在各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。
  379. eval_details为dict,包含关键字:'bbox',对应元素预测结果列表,每个预测结果由图像id、
  380. 预测框类别id、预测框坐标、预测框得分;’gt‘:真实标注框相关信息。
  381. """
  382. arrange_transforms(
  383. model_type=self.model_type,
  384. class_name=self.__class__.__name__,
  385. transforms=eval_dataset.transforms,
  386. mode='eval')
  387. if metric is None:
  388. if hasattr(self, 'metric') and self.metric is not None:
  389. metric = self.metric
  390. else:
  391. if isinstance(eval_dataset, paddlex.datasets.CocoDetection):
  392. metric = 'COCO'
  393. elif isinstance(eval_dataset, paddlex.datasets.VOCDetection):
  394. metric = 'VOC'
  395. else:
  396. raise Exception(
  397. "eval_dataset should be datasets.VOCDetection or datasets.COCODetection."
  398. )
  399. assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
  400. total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
  401. results = list()
  402. data_generator = eval_dataset.generator(
  403. batch_size=batch_size, drop_last=False)
  404. logging.info(
  405. "Start to evaluating(total_samples={}, total_steps={})...".format(
  406. eval_dataset.num_samples, total_steps))
  407. for step, data in tqdm.tqdm(
  408. enumerate(data_generator()), total=total_steps):
  409. images = np.array([d[0] for d in data])
  410. im_sizes = np.array([d[1] for d in data])
  411. feed_data = {'image': images, 'im_size': im_sizes}
  412. with fluid.scope_guard(self.scope):
  413. outputs = self.exe.run(
  414. self.test_prog,
  415. feed=[feed_data],
  416. fetch_list=list(self.test_outputs.values()),
  417. return_numpy=False)
  418. res = {
  419. 'bbox': (np.array(outputs[0]),
  420. outputs[0].recursive_sequence_lengths())
  421. }
  422. res_id = [np.array([d[2]]) for d in data]
  423. res['im_id'] = (res_id, [])
  424. if metric == 'VOC':
  425. res_gt_box = [d[3].reshape(-1, 4) for d in data]
  426. res_gt_label = [d[4].reshape(-1, 1) for d in data]
  427. res_is_difficult = [d[5].reshape(-1, 1) for d in data]
  428. res_id = [np.array([d[2]]) for d in data]
  429. res['gt_box'] = (res_gt_box, [])
  430. res['gt_label'] = (res_gt_label, [])
  431. res['is_difficult'] = (res_is_difficult, [])
  432. results.append(res)
  433. logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
  434. 1, total_steps))
  435. box_ap_stats, eval_details = eval_results(
  436. results, metric, eval_dataset.coco_gt, with_background=False)
  437. evaluate_metrics = OrderedDict(
  438. zip(['bbox_mmap'
  439. if metric == 'COCO' else 'bbox_map'], box_ap_stats))
  440. if return_details:
  441. return evaluate_metrics, eval_details
  442. return evaluate_metrics
  443. @staticmethod
  444. def _preprocess(images, transforms, model_type, class_name, thread_num=1):
  445. arrange_transforms(
  446. model_type=model_type,
  447. class_name=class_name,
  448. transforms=transforms,
  449. mode='test')
  450. pool = ThreadPool(thread_num)
  451. batch_data = pool.map(transforms, images)
  452. pool.close()
  453. pool.join()
  454. padding_batch = generate_minibatch(batch_data)
  455. im = np.array(
  456. [data[0] for data in padding_batch],
  457. dtype=padding_batch[0][0].dtype)
  458. im_size = np.array([data[1] for data in padding_batch], dtype=np.int32)
  459. return im, im_size
  460. @staticmethod
  461. def _postprocess(res, batch_size, num_classes, labels):
  462. clsid2catid = dict({i: i for i in range(num_classes)})
  463. xywh_results = bbox2out([res], clsid2catid)
  464. preds = [[] for i in range(batch_size)]
  465. for xywh_res in xywh_results:
  466. image_id = xywh_res['image_id']
  467. del xywh_res['image_id']
  468. xywh_res['category'] = labels[xywh_res['category_id']]
  469. preds[image_id].append(xywh_res)
  470. return preds
  471. def predict(self, img_file, transforms=None):
  472. """预测。
  473. Args:
  474. img_file (str|np.ndarray): 预测图像路径,或者是解码后的排列格式为(H, W, C)且类型为float32且为BGR格式的数组。
  475. transforms (paddlex.det.transforms): 数据预处理操作。
  476. Returns:
  477. list: 预测结果列表,每个预测结果由预测框类别标签、
  478. 预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
  479. 预测框得分组成。
  480. """
  481. if transforms is None and not hasattr(self, 'test_transforms'):
  482. raise Exception("transforms need to be defined, now is None.")
  483. if isinstance(img_file, (str, np.ndarray)):
  484. images = [img_file]
  485. else:
  486. raise Exception("img_file must be str/np.ndarray")
  487. if transforms is None:
  488. transforms = self.test_transforms
  489. im, im_size = YOLOv3._preprocess(images, transforms, self.model_type,
  490. self.__class__.__name__)
  491. with fluid.scope_guard(self.scope):
  492. result = self.exe.run(self.test_prog,
  493. feed={'image': im,
  494. 'im_size': im_size},
  495. fetch_list=list(self.test_outputs.values()),
  496. return_numpy=False,
  497. use_program_cache=True)
  498. res = {
  499. k: (np.array(v), v.recursive_sequence_lengths())
  500. for k, v in zip(list(self.test_outputs.keys()), result)
  501. }
  502. res['im_id'] = (np.array(
  503. [[i] for i in range(len(images))]).astype('int32'), [[]])
  504. preds = YOLOv3._postprocess(res,
  505. len(images), self.num_classes, self.labels)
  506. return preds[0]
  507. def batch_predict(self, img_file_list, transforms=None, thread_num=2):
  508. """预测。
  509. Args:
  510. img_file_list (list|tuple): 对列表(或元组)中的图像同时进行预测,列表中的元素可以是图像路径,也可以是解码后的排列格式为(H,W,C)
  511. 且类型为float32且为BGR格式的数组。
  512. transforms (paddlex.det.transforms): 数据预处理操作。
  513. thread_num (int): 并发执行各图像预处理时的线程数。
  514. Returns:
  515. list: 每个元素都为列表,表示各图像的预测结果。在各图像的预测结果列表中,每个预测结果由预测框类别标签、
  516. 预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
  517. 预测框得分组成。
  518. """
  519. if transforms is None and not hasattr(self, 'test_transforms'):
  520. raise Exception("transforms need to be defined, now is None.")
  521. if not isinstance(img_file_list, (list, tuple)):
  522. raise Exception("im_file must be list/tuple")
  523. if transforms is None:
  524. transforms = self.test_transforms
  525. im, im_size = YOLOv3._preprocess(img_file_list, transforms,
  526. self.model_type,
  527. self.__class__.__name__, thread_num)
  528. with fluid.scope_guard(self.scope):
  529. result = self.exe.run(self.test_prog,
  530. feed={'image': im,
  531. 'im_size': im_size},
  532. fetch_list=list(self.test_outputs.values()),
  533. return_numpy=False,
  534. use_program_cache=True)
  535. res = {
  536. k: (np.array(v), v.recursive_sequence_lengths())
  537. for k, v in zip(list(self.test_outputs.keys()), result)
  538. }
  539. res['im_id'] = (np.array(
  540. [[i] for i in range(len(img_file_list))]).astype('int32'), [[]])
  541. preds = YOLOv3._postprocess(res,
  542. len(img_file_list), self.num_classes,
  543. self.labels)
  544. return preds