| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import re
- from typing import Any, Dict, List, Optional, Tuple, Union
- import numpy as np
- from ....utils import logging
- from ....utils.deps import pipeline_requires_extra
- from ...common.batch_sampler import MarkDownBatchSampler
- from ...utils.hpi import HPIConfig
- from ...utils.pp_option import PaddlePredictorOption
- from ..base import BasePipeline
- from .result import MarkdownResult
- @pipeline_requires_extra("ie")
- class PP_DocTranslation_Pipeline(BasePipeline):
- entities = ["PP-DocTranslation"]
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
- initial_predictor: bool = False,
- ) -> None:
- """Initializes the PP_Translation_Pipeline.
- Args:
- config (Dict): Configuration dictionary containing various settings.
- device (str, optional): Device to run the predictions on. Defaults to None.
- pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
- use_hpip (bool, optional): Whether to use the high-performance
- inference plugin (HPIP) by default. Defaults to False.
- hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
- The default high-performance inference configuration dictionary.
- Defaults to None.
- initial_predictor (bool, optional): Whether to initialize the predictor. Defaults to True.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
- )
- self.pipeline_name = config["pipeline_name"]
- self.config = config
- self.use_layout_parser = config.get("use_layout_parser", True)
- self.layout_parsing_pipeline = None
- self.chat_bot = None
- if initial_predictor:
- self.inintial_visual_predictor(config)
- self.inintial_chat_predictor(config)
- self.markdown_batch_sampler = MarkDownBatchSampler()
- def inintial_visual_predictor(self, config: dict) -> None:
- """
- Initializes the visual predictor with the given configuration.
- Args:
- config (dict): The configuration dictionary containing the necessary
- parameters for initializing the predictor.
- Returns:
- None
- """
- self.use_layout_parser = config.get("use_layout_parser", True)
- if self.use_layout_parser:
- layout_parsing_config = config.get("SubPipelines", {}).get(
- "LayoutParser",
- {"pipeline_config_error": "config error for layout_parsing_pipeline!"},
- )
- self.layout_parsing_pipeline = self.create_pipeline(layout_parsing_config)
- return
- def inintial_chat_predictor(self, config: dict) -> None:
- """
- Initializes the chat predictor with the given configuration.
- Args:
- config (dict): The configuration dictionary containing the necessary
- parameters for initializing the predictor.
- Returns:
- None
- """
- from .. import create_chat_bot
- chat_bot_config = config.get("SubModules", {}).get(
- "LLM_Chat",
- {"chat_bot_config_error": "config error for llm chat bot!"},
- )
- self.chat_bot = create_chat_bot(chat_bot_config)
- from .. import create_prompt_engineering
- translate_pe_config = (
- config.get("SubModules", {})
- .get("PromptEngneering", {})
- .get(
- "Translate_CommonText",
- {"pe_config_error": "config error for translate_pe_config!"},
- )
- )
- self.translate_pe = create_prompt_engineering(translate_pe_config)
- return
- def predict(self, *args, **kwargs) -> None:
- logging.error(
- "PP-Translation Pipeline do not support to call `predict()` directly! Please invoke `visual_predict`, `build_vector`, `chat` sequentially to obtain the result."
- )
- return
- def visual_predict(
- self,
- input: Union[str, List[str], np.ndarray, List[np.ndarray]],
- use_doc_orientation_classify: Optional[bool] = None,
- use_doc_unwarping: Optional[bool] = None,
- use_textline_orientation: Optional[bool] = None,
- use_seal_recognition: Optional[bool] = None,
- use_table_recognition: Optional[bool] = None,
- layout_threshold: Optional[Union[float, dict]] = None,
- layout_nms: Optional[bool] = None,
- layout_unclip_ratio: Optional[Union[float, Tuple[float, float], dict]] = None,
- layout_merge_bboxes_mode: Optional[str] = None,
- text_det_limit_side_len: Optional[int] = None,
- text_det_limit_type: Optional[str] = None,
- text_det_thresh: Optional[float] = None,
- text_det_box_thresh: Optional[float] = None,
- text_det_unclip_ratio: Optional[float] = None,
- text_rec_score_thresh: Optional[float] = None,
- seal_det_limit_side_len: Optional[int] = None,
- seal_det_limit_type: Optional[str] = None,
- seal_det_thresh: Optional[float] = None,
- seal_det_box_thresh: Optional[float] = None,
- seal_det_unclip_ratio: Optional[float] = None,
- seal_rec_score_thresh: Optional[float] = None,
- **kwargs,
- ) -> dict:
- """
- This function takes an input image or a list of images and performs various visual
- prediction tasks such as document orientation classification, document unwarping,
- general OCR, seal recognition, and table recognition based on the provided flags.
- Args:
- input (Union[str, list[str], np.ndarray, list[np.ndarray]]): Input image path, list of image paths,
- numpy array of an image, or list of numpy arrays.
- use_doc_orientation_classify (bool): Flag to use document orientation classification.
- use_doc_unwarping (bool): Flag to use document unwarping.
- use_textline_orientation (Optional[bool]): Whether to use textline orientation prediction.
- use_seal_recognition (bool): Flag to use seal recognition.
- use_table_recognition (bool): Flag to use table recognition.
- layout_threshold (Optional[float]): The threshold value to filter out low-confidence predictions. Default is None.
- layout_nms (bool, optional): Whether to use layout-aware NMS. Defaults to False.
- layout_unclip_ratio (Optional[Union[float, Tuple[float, float]]], optional): The ratio of unclipping the bounding box.
- Defaults to None.
- If it's a single number, then both width and height are used.
- If it's a tuple of two numbers, then they are used separately for width and height respectively.
- If it's None, then no unclipping will be performed.
- layout_merge_bboxes_mode (Optional[str], optional): The mode for merging bounding boxes. Defaults to None.
- text_det_limit_side_len (Optional[int]): Maximum side length for text detection.
- text_det_limit_type (Optional[str]): Type of limit to apply for text detection.
- text_det_thresh (Optional[float]): Threshold for text detection.
- text_det_box_thresh (Optional[float]): Threshold for text detection boxes.
- text_det_unclip_ratio (Optional[float]): Ratio for unclipping text detection boxes.
- text_rec_score_thresh (Optional[float]): Score threshold for text recognition.
- seal_det_limit_side_len (Optional[int]): Maximum side length for seal detection.
- seal_det_limit_type (Optional[str]): Type of limit to apply for seal detection.
- seal_det_thresh (Optional[float]): Threshold for seal detection.
- seal_det_box_thresh (Optional[float]): Threshold for seal detection boxes.
- seal_det_unclip_ratio (Optional[float]): Ratio for unclipping seal detection boxes.
- seal_rec_score_thresh (Optional[float]): Score threshold for seal recognition.
- **kwargs: Additional keyword arguments.
- Returns:
- dict: A dictionary containing the layout parsing result and visual information.
- """
- if self.use_layout_parser == False:
- logging.error("The models for layout parser are not initialized.")
- yield {"error": "The models for layout parser are not initialized."}
- if self.layout_parsing_pipeline is None:
- logging.warning(
- "The layout parsing pipeline is not initialized, will initialize it now."
- )
- self.inintial_visual_predictor(self.config)
- for layout_parsing_result in self.layout_parsing_pipeline.predict(
- input,
- use_doc_orientation_classify=use_doc_orientation_classify,
- use_doc_unwarping=use_doc_unwarping,
- use_textline_orientation=use_textline_orientation,
- use_seal_recognition=use_seal_recognition,
- use_table_recognition=use_table_recognition,
- layout_threshold=layout_threshold,
- layout_nms=layout_nms,
- layout_unclip_ratio=layout_unclip_ratio,
- layout_merge_bboxes_mode=layout_merge_bboxes_mode,
- text_det_limit_side_len=text_det_limit_side_len,
- text_det_limit_type=text_det_limit_type,
- text_det_thresh=text_det_thresh,
- text_det_box_thresh=text_det_box_thresh,
- text_det_unclip_ratio=text_det_unclip_ratio,
- text_rec_score_thresh=text_rec_score_thresh,
- seal_det_box_thresh=seal_det_box_thresh,
- seal_det_limit_side_len=seal_det_limit_side_len,
- seal_det_limit_type=seal_det_limit_type,
- seal_det_thresh=seal_det_thresh,
- seal_det_unclip_ratio=seal_det_unclip_ratio,
- seal_rec_score_thresh=seal_rec_score_thresh,
- ):
- visual_predict_res = {
- "layout_parsing_result": layout_parsing_result,
- }
- yield visual_predict_res
- def load_from_markdown(self, input):
- markdown_info_list = []
- for markdown_sample in self.markdown_batch_sampler.sample(input):
- markdown_content = markdown_sample.instances[0]
- input_path = markdown_sample.input_paths[0]
- markdown_info = {
- "input_path": input_path,
- "page_index": None,
- "markdown_texts": markdown_content,
- "page_continuation_flags": (True, True),
- }
- markdown_info_list.append(MarkdownResult(markdown_info))
- return markdown_info_list
- def split_markdown(self, md_text, chunk_size):
- if (
- not isinstance(md_text, str)
- or not isinstance(chunk_size, int)
- or chunk_size <= 0
- ):
- raise ValueError("Invalid input parameters.")
- chunks = []
- current_chunk = []
- # if md_text less than chunk_size, return the md_text
- if len(md_text) < chunk_size:
- chunks.append(md_text)
- return chunks
- # split the md_text into paragraphs
- paragraphs = md_text.split("\n\n")
- for paragraph in paragraphs:
- if len(paragraph) == 0:
- # 空行直接跳过
- continue
- if len(paragraph) <= chunk_size:
- current_chunk.append(paragraph)
- else:
- # if the paragraph is too long, split it into sentences
- sentences = re.split(r"(?<=[。.!?])", paragraph)
- for sentence in sentences:
- if len(sentence) == 0:
- continue
- if len(sentence) > chunk_size:
- raise ValueError("A sentence exceeds the chunk size limit.")
- # if the current chunk is too long, store it and start a new one
- if sum(len(s) for s in current_chunk) + len(sentence) > chunk_size:
- chunks.append("\n\n".join(current_chunk))
- current_chunk = [sentence]
- else:
- current_chunk.append(sentence)
- if sum(len(s) for s in current_chunk) >= chunk_size:
- chunks.append("\n\n".join(current_chunk))
- current_chunk = []
- if current_chunk:
- chunks.append("\n\n".join(current_chunk))
- return chunks
- def translate(
- self,
- ori_md_info_list: List[Dict],
- target_language: str = "zh",
- chunk_size: int = 5000,
- task_description: str = None,
- output_format: str = None,
- rules_str: str = None,
- few_shot_demo_text_content: str = None,
- few_shot_demo_key_value_list: str = None,
- chat_bot_config=None,
- **kwargs,
- ):
- """
- Translate the given original text into the specified target language using the configured translation model.
- Args:
- original_text (str): The original text to be translated.
- target_language (str): The desired target language code.
- **kwargs: Additional keyword arguments passed to the translation model.
- Returns:
- str: The translated text in the target language.
- """
- if self.chat_bot is None:
- logging.warning(
- "The LLM chat bot is not initialized,will initialize it now."
- )
- self.inintial_chat_predictor(self.config)
- if chat_bot_config is not None:
- from .. import create_chat_bot
- chat_bot = create_chat_bot(chat_bot_config)
- else:
- chat_bot = self.chat_bot
- if (
- isinstance(ori_md_info_list, list)
- and ori_md_info_list[0].get("page_index") is not None
- ):
- # for multi page pdf
- ori_md_info_list = [self.concatenate_markdown_pages(ori_md_info_list)]
- for ori_md in ori_md_info_list:
- original_texts = ori_md["markdown_texts"]
- chunks = self.split_markdown(original_texts, chunk_size)
- target_language_chunks = []
- if len(chunks) > 1:
- logging.info(
- f"Get the markdown text, it's length is {len(original_texts)}, will split it into {len(chunks)} parts."
- )
- logging.info(
- "Starting to translate the markdown text, will take a while. please wait..."
- )
- for idx, chunk in enumerate(chunks):
- logging.info(f"Translating the {idx+1}/{len(chunks)} part.")
- prompt = self.translate_pe.generate_prompt(
- original_text=chunk,
- language=target_language,
- task_description=task_description,
- output_format=output_format,
- rules_str=rules_str,
- few_shot_demo_text_content=few_shot_demo_text_content,
- few_shot_demo_key_value_list=few_shot_demo_key_value_list,
- )
- target_language_chunk = chat_bot.generate_chat_results(
- prompt=prompt
- ).get("content", "")
- target_language_chunks.append(target_language_chunk)
- target_language_texts = "\n\n".join(target_language_chunks)
- yield MarkdownResult(
- {
- "language": target_language,
- "input_path": ori_md["input_path"],
- "page_index": ori_md["page_index"],
- "page_continuation_flags": ori_md["page_continuation_flags"],
- "markdown_texts": target_language_texts,
- }
- )
- def concatenate_markdown_pages(self, markdown_list: list) -> tuple:
- """
- Concatenate Markdown content from multiple pages into a single document.
- Args:
- markdown_list (list): A list containing Markdown data for each page.
- Returns:
- tuple: A tuple containing the processed Markdown text.
- """
- markdown_texts = ""
- previous_page_last_element_paragraph_end_flag = True
- if len(markdown_list) == 0:
- raise ValueError("The length of markdown_list is zero.")
- for res in markdown_list:
- # Get the paragraph flags for the current page
- page_first_element_paragraph_start_flag: bool = res[
- "page_continuation_flags"
- ][0]
- page_last_element_paragraph_end_flag: bool = res["page_continuation_flags"][
- 1
- ]
- # Determine whether to add a space or a newline
- if (
- not page_first_element_paragraph_start_flag
- and not previous_page_last_element_paragraph_end_flag
- ):
- last_char_of_markdown = markdown_texts[-1] if markdown_texts else ""
- first_char_of_handler = (
- res["markdown_texts"][0] if res["markdown_texts"] else ""
- )
- # Check if the last character and the first character are Chinese characters
- last_is_chinese_char = (
- re.match(r"[\u4e00-\u9fff]", last_char_of_markdown)
- if last_char_of_markdown
- else False
- )
- first_is_chinese_char = (
- re.match(r"[\u4e00-\u9fff]", first_char_of_handler)
- if first_char_of_handler
- else False
- )
- if not (last_is_chinese_char or first_is_chinese_char):
- markdown_texts += " " + res["markdown_texts"]
- else:
- markdown_texts += res["markdown_texts"]
- else:
- markdown_texts += "\n\n" + res["markdown_texts"]
- previous_page_last_element_paragraph_end_flag = (
- page_last_element_paragraph_end_flag
- )
- concatenate_result = {
- "input_path": markdown_list[0]["input_path"],
- "page_index": None,
- "page_continuation_flags": (True, True),
- "markdown_texts": markdown_texts,
- }
- return MarkdownResult(concatenate_result)
|