pretrain_weights.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. import paddlex
  2. import paddlex.utils.logging as logging
  3. import paddlehub as hub
  4. import os
  5. import os.path as osp
  6. image_pretrain = {
  7. 'ResNet18':
  8. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar',
  9. 'ResNet34':
  10. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar',
  11. 'ResNet50':
  12. 'http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar',
  13. 'ResNet101':
  14. 'http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar',
  15. 'ResNet50_vd':
  16. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar',
  17. 'ResNet101_vd':
  18. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar',
  19. 'ResNet50_vd_ssld':
  20. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar',
  21. 'ResNet101_vd_ssld':
  22. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar',
  23. 'MobileNetV1':
  24. 'http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar',
  25. 'MobileNetV2_x1.0':
  26. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar',
  27. 'MobileNetV2_x0.5':
  28. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar',
  29. 'MobileNetV2_x2.0':
  30. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar',
  31. 'MobileNetV2_x0.25':
  32. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar',
  33. 'MobileNetV2_x1.5':
  34. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar',
  35. 'MobileNetV3_small':
  36. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar',
  37. 'MobileNetV3_large':
  38. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar',
  39. 'MobileNetV3_small_x1_0_ssld':
  40. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar',
  41. 'MobileNetV3_large_x1_0_ssld':
  42. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar',
  43. 'DarkNet53':
  44. 'https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar',
  45. 'DenseNet121':
  46. 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar',
  47. 'DenseNet161':
  48. 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar',
  49. 'DenseNet201':
  50. 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar',
  51. 'DetResNet50':
  52. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar',
  53. 'SegXception41':
  54. 'https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar',
  55. 'SegXception65':
  56. 'https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar',
  57. 'ShuffleNetV2':
  58. 'https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar',
  59. 'HRNet_W18':
  60. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar',
  61. 'HRNet_W30':
  62. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar',
  63. 'HRNet_W32':
  64. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar',
  65. 'HRNet_W40':
  66. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar',
  67. 'HRNet_W44':
  68. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar',
  69. 'HRNet_W48':
  70. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar',
  71. 'HRNet_W60':
  72. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W60_C_pretrained.tar',
  73. 'HRNet_W64':
  74. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar',
  75. 'AlexNet':
  76. 'http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar'
  77. }
  78. coco_pretrain = {
  79. 'YOLOv3_DarkNet53_COCO':
  80. 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar',
  81. 'YOLOv3_MobileNetV1_COCO':
  82. 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar',
  83. 'YOLOv3_MobileNetV3_large_COCO':
  84. 'https://bj.bcebos.com/paddlex/models/yolov3_mobilenet_v3.tar',
  85. 'YOLOv3_ResNet34_COCO':
  86. 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar',
  87. 'YOLOv3_ResNet50_vd_COCO':
  88. 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar',
  89. 'FasterRCNN_ResNet18_COCO':
  90. 'https://bj.bcebos.com/paddlex/pretrained_weights/faster_rcnn_r18_fpn_1x.tar',
  91. 'FasterRCNN_ResNet50_COCO':
  92. 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar',
  93. 'FasterRCNN_ResNet50_vd_COCO':
  94. 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar',
  95. 'FasterRCNN_ResNet101_COCO':
  96. 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar',
  97. 'FasterRCNN_ResNet101_vd_COCO':
  98. 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar',
  99. 'FasterRCNN_HRNet_W18_COCO':
  100. 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_hrnetv2p_w18_2x.tar',
  101. 'MaskRCNN_ResNet18_COCO':
  102. 'https://bj.bcebos.com/paddlex/pretrained_weights/mask_rcnn_r18_fpn_1x.tar',
  103. 'MaskRCNN_ResNet50_COCO':
  104. 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar',
  105. 'MaskRCNN_ResNet50_vd_COCO':
  106. 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar',
  107. 'MaskRCNN_ResNet101_COCO':
  108. 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar',
  109. 'MaskRCNN_ResNet101_vd_COCO':
  110. 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar',
  111. 'MaskRCNN_HRNet_W18_COCO':
  112. 'https://bj.bcebos.com/paddlex/pretrained_weights/mask_rcnn_hrnetv2p_w18_2x.tar',
  113. 'UNet_COCO': 'https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz',
  114. 'DeepLabv3p_MobileNetV2_x1.0_COCO':
  115. 'https://bj.bcebos.com/v1/paddleseg/deeplab_mobilenet_x1_0_coco.tgz',
  116. 'DeepLabv3p_Xception65_COCO':
  117. 'https://paddleseg.bj.bcebos.com/models/xception65_coco.tgz',
  118. 'PPYOLO_ResNet50_vd_ssld_COCO':
  119. 'https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams'
  120. }
  121. cityscapes_pretrain = {
  122. 'DeepLabv3p_MobileNetV2_x1.0_CITYSCAPES':
  123. 'https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz',
  124. 'DeepLabv3p_Xception65_CITYSCAPES':
  125. 'https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz',
  126. 'HRNet_W18_CITYSCAPES':
  127. 'https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz',
  128. 'FastSCNN_CITYSCAPES':
  129. 'https://paddleseg.bj.bcebos.com/models/fast_scnn_cityscape.tar'
  130. }
  131. def get_pretrain_weights(flag, class_name, backbone, save_dir):
  132. if flag is None:
  133. return None
  134. elif osp.isdir(flag):
  135. return flag
  136. elif osp.isfile(flag):
  137. return flag
  138. warning_info = "{} does not support to be finetuned with weights pretrained on the {} dataset, so pretrain_weights is forced to be set to {}"
  139. if flag == 'COCO':
  140. if class_name == 'DeepLabv3p' and backbone in [
  141. 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5',
  142. 'MobileNetV2_x1.5', 'MobileNetV2_x2.0'
  143. ]:
  144. model_name = '{}_{}'.format(class_name, backbone)
  145. logging.warning(warning_info.format(model_name, flag, 'IMAGENET'))
  146. flag = 'IMAGENET'
  147. elif class_name == 'HRNet':
  148. logging.warning(warning_info.format(class_name, flag, 'IMAGENET'))
  149. flag = 'IMAGENET'
  150. elif class_name == 'FastSCNN':
  151. logging.warning(
  152. warning_info.format(class_name, flag, 'CITYSCAPES'))
  153. flag = 'CITYSCAPES'
  154. elif flag == 'CITYSCAPES':
  155. model_name = '{}_{}'.format(class_name, backbone)
  156. if class_name == 'UNet':
  157. logging.warning(warning_info.format(class_name, flag, 'COCO'))
  158. flag = 'COCO'
  159. if class_name == 'HRNet' and backbone.split('_')[
  160. -1] in ['W30', 'W32', 'W40', 'W48', 'W60', 'W64']:
  161. logging.warning(warning_info.format(backbone, flag, 'IMAGENET'))
  162. flag = 'IMAGENET'
  163. if class_name == 'DeepLabv3p' and backbone in [
  164. 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5',
  165. 'MobileNetV2_x1.5', 'MobileNetV2_x2.0'
  166. ]:
  167. model_name = '{}_{}'.format(class_name, backbone)
  168. logging.warning(warning_info.format(model_name, flag, 'IMAGENET'))
  169. flag = 'IMAGENET'
  170. elif flag == 'IMAGENET':
  171. if class_name == 'UNet':
  172. logging.warning(warning_info.format(class_name, flag, 'COCO'))
  173. flag = 'COCO'
  174. elif class_name == 'FastSCNN':
  175. logging.warning(
  176. warning_info.format(class_name, flag, 'CITYSCAPES'))
  177. flag = 'CITYSCAPES'
  178. if flag == 'IMAGENET':
  179. new_save_dir = save_dir
  180. if hasattr(paddlex, 'pretrain_dir'):
  181. new_save_dir = paddlex.pretrain_dir
  182. if backbone.startswith('Xception'):
  183. backbone = 'Seg{}'.format(backbone)
  184. elif backbone == 'MobileNetV2':
  185. backbone = 'MobileNetV2_x1.0'
  186. elif backbone == 'MobileNetV3_small_ssld':
  187. backbone = 'MobileNetV3_small_x1_0_ssld'
  188. elif backbone == 'MobileNetV3_large_ssld':
  189. backbone = 'MobileNetV3_large_x1_0_ssld'
  190. if class_name in ['YOLOv3', 'FasterRCNN', 'MaskRCNN']:
  191. if backbone == 'ResNet50':
  192. backbone = 'DetResNet50'
  193. assert backbone in image_pretrain, "There is not ImageNet pretrain weights for {}, you may try COCO.".format(
  194. backbone)
  195. # if backbone == 'AlexNet':
  196. # url = image_pretrain[backbone]
  197. # fname = osp.split(url)[-1].split('.')[0]
  198. # paddlex.utils.download_and_decompress(url, path=new_save_dir)
  199. # return osp.join(new_save_dir, fname)
  200. try:
  201. logging.info(
  202. "Connecting PaddleHub server to get pretrain weights...")
  203. hub.download(backbone, save_path=new_save_dir)
  204. except Exception as e:
  205. logging.error(
  206. "Couldn't download pretrain weight, you can download it manualy from {} (decompress the file if it is a compressed file), and set pretrain weights by your self".
  207. format(image_pretrain[backbone]),
  208. exit=False)
  209. if isinstance(e, hub.ResourceNotFoundError):
  210. raise Exception("Resource for backbone {} not found".format(
  211. backbone))
  212. elif isinstance(e, hub.ServerConnectionError):
  213. raise Exception(
  214. "Cannot get reource for backbone {}, please check your internet connection"
  215. .format(backbone))
  216. else:
  217. raise Exception(
  218. "Unexpected error, please make sure paddlehub >= 1.6.2")
  219. return osp.join(new_save_dir, backbone)
  220. elif flag in ['COCO', 'CITYSCAPES']:
  221. new_save_dir = save_dir
  222. if hasattr(paddlex, 'pretrain_dir'):
  223. new_save_dir = paddlex.pretrain_dir
  224. if class_name in [
  225. 'YOLOv3', 'FasterRCNN', 'MaskRCNN', 'DeepLabv3p', 'PPYOLO'
  226. ]:
  227. backbone = '{}_{}'.format(class_name, backbone)
  228. backbone = "{}_{}".format(backbone, flag)
  229. if flag == 'COCO':
  230. url = coco_pretrain[backbone]
  231. elif flag == 'CITYSCAPES':
  232. url = cityscapes_pretrain[backbone]
  233. fname = osp.split(url)[-1].split('.')[0]
  234. # paddlex.utils.download_and_decompress(url, path=new_save_dir)
  235. # return osp.join(new_save_dir, fname)
  236. try:
  237. logging.info(
  238. "Connecting PaddleHub server to get pretrain weights...")
  239. hub.download(backbone, save_path=new_save_dir)
  240. except Exception as e:
  241. logging.error(
  242. "Couldn't download pretrain weight, you can download it manualy from {} (decompress the file if it is a compressed file), and set pretrain weights by your self".
  243. format(url),
  244. exit=False)
  245. if isinstance(hub.ResourceNotFoundError):
  246. raise Exception("Resource for backbone {} not found".format(
  247. backbone))
  248. elif isinstance(hub.ServerConnectionError):
  249. raise Exception(
  250. "Cannot get reource for backbone {}, please check your internet connection"
  251. .format(backbone))
  252. else:
  253. raise Exception(
  254. "Unexpected error, please make sure paddlehub >= 1.6.2")
  255. return osp.join(new_save_dir, backbone)
  256. else:
  257. logging.error("Path of retrain weights '{}' is not exists!".format(
  258. flag))