| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import numpy as np
- from ...utils.io import ImageReader
- from ..base import BaseComponent
- def restructured_boxes(boxes, labels):
- return [
- {
- "cls_id": int(box[0]),
- "label": labels[int(box[0])],
- "score": float(box[1]),
- "coordinate": list(map(int, box[2:])),
- }
- for box in boxes
- ]
- class DetPostProcess(BaseComponent):
- """Save Result Transform"""
- INPUT_KEYS = ["img_path", "boxes"]
- OUTPUT_KEYS = ["boxes"]
- DEAULT_INPUTS = {"boxes": "boxes"}
- DEAULT_OUTPUTS = {"boxes": "boxes"}
- def __init__(self, threshold=0.5, labels=None):
- super().__init__()
- self.threshold = threshold
- self.labels = labels
- def apply(self, boxes):
- """apply"""
- expect_boxes = (boxes[:, 1] > self.threshold) & (boxes[:, 0] > -1)
- boxes = boxes[expect_boxes, :]
- boxes = restructured_boxes(boxes, self.labels)
- result = {"boxes": boxes}
- return result
- class CropByBoxes(BaseComponent):
- """Crop Image by Box"""
- INPUT_KEYS = ["img_path", "boxes", "labels"]
- OUTPUT_KEYS = ["img", "box", "label"]
- DEAULT_INPUTS = {"img_path": "img_path", "boxes": "boxes", "labels": "labels"}
- DEAULT_OUTPUTS = {"img": "img", "box": "box", "label": "label"}
- def __init__(self):
- super().__init__()
- self._reader = ImageReader(backend="opencv")
- def apply(self, img_path, boxes, labels=None):
- output_list = []
- img = self._reader.read(img_path)
- for bbox in boxes:
- label_id = int(bbox[0])
- box = bbox[2:]
- if labels is not None:
- label = labels[label_id]
- else:
- label = label_id
- xmin, ymin, xmax, ymax = [int(i) for i in box]
- img_crop = img[ymin:ymax, xmin:xmax]
- output_list.append({"img": img_crop, "box": box, "label": label})
- return output_list
- class DetPad(BaseComponent):
- INPUT_KEYS = "img"
- OUTPUT_KEYS = "img"
- DEAULT_INPUTS = {"img": "img"}
- DEAULT_OUTPUTS = {"img": "img"}
- def __init__(self, size, fill_value=[114.0, 114.0, 114.0]):
- """
- Pad image to a specified size.
- Args:
- size (list[int]): image target size
- fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0)
- """
- super().__init__()
- if isinstance(size, int):
- size = [size, size]
- self.size = size
- self.fill_value = fill_value
- def apply(self, img):
- im = img
- im_h, im_w = im.shape[:2]
- h, w = self.size
- if h == im_h and w == im_w:
- return {"img": im}
- canvas = np.ones((h, w, 3), dtype=np.float32)
- canvas *= np.array(self.fill_value, dtype=np.float32)
- canvas[0:im_h, 0:im_w, :] = im.astype(np.float32)
- return {"img": canvas}
|