| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import numpy as np
- import math
- import copy
- import json
- import PIL
- from PIL import Image, ImageDraw, ImageFont
- from ...utils import logging
- from ...utils.fonts import PINGFANG_FONT_FILE_PATH
- from ..utils.io import ImageWriter, ImageReader
- from ..utils.color_map import get_colormap, font_colormap
- from .base import BaseResult
- from .det import draw_box
- def restore_to_draw_masks(img_size, boxes, masks):
- """
- Restores extracted masks to the original shape and draws them on a blank image.
- """
- restored_masks = []
- for i, (box, mask) in enumerate(zip(boxes, masks)):
- restored_mask = np.zeros(img_size, dtype=np.uint8)
- x_min, y_min, x_max, y_max = map(lambda x: int(round(x)), box["coordinate"])
- restored_mask[y_min:y_max, x_min:x_max] = mask
- restored_masks.append(restored_mask)
- return np.array(restored_masks)
- def draw_mask(im, boxes, np_masks, img_size):
- """
- Args:
- im (PIL.Image.Image): PIL image
- boxes (list): a list of dictionaries representing detection box information.
- np_masks (np.ndarray): shape:[N, im_h, im_w]
- Returns:
- im (PIL.Image.Image): visualized image
- """
- color_list = get_colormap(rgb=True)
- w_ratio = 0.4
- alpha = 0.7
- im = np.array(im).astype("float32")
- clsid2color = {}
- np_masks = restore_to_draw_masks(img_size, boxes, np_masks)
- im_h, im_w = im.shape[:2]
- np_masks = np_masks[:, :im_h, :im_w]
- for i in range(len(np_masks)):
- clsid, score = int(boxes[i]["cls_id"]), boxes[i]["score"]
- mask = np_masks[i]
- if clsid not in clsid2color:
- color_index = i % len(color_list)
- clsid2color[clsid] = color_list[color_index]
- color_mask = clsid2color[clsid]
- for c in range(3):
- color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
- idx = np.nonzero(mask)
- color_mask = np.array(color_mask)
- im[idx[0], idx[1], :] *= 1.0 - alpha
- im[idx[0], idx[1], :] += alpha * color_mask
- return Image.fromarray(im.astype("uint8"))
- class InstanceSegResult(BaseResult):
- """Save Result Transform"""
- def __init__(self, data):
- super().__init__(data)
- # We use pillow backend to save both numpy arrays and PIL Image objects
- self._img_reader.set_backend("pillow")
- self._img_writer.set_backend("pillow")
- def _get_res_img(self):
- """apply"""
- boxes = np.array(self["boxes"])
- masks = self["masks"]
- img_path = self["img_path"]
- file_name = os.path.basename(img_path)
- image = self._img_reader.read(img_path)
- ori_img_size = list(image.size)[::-1]
- image = draw_mask(image, boxes, masks, ori_img_size)
- image = draw_box(image, boxes)
- return image
- def print(self, json_format=True, indent=4, ensure_ascii=False):
- str_ = copy.deepcopy(self)
- del str_["masks"]
- if json_format:
- str_ = json.dumps(str_, indent=indent, ensure_ascii=ensure_ascii)
- logging.info(str_)
|