predictor.py 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from ....utils.func_register import FuncRegister
  15. from ....modules.formula_recognition.model_list import MODELS
  16. from ...common.batch_sampler import ImageBatchSampler
  17. from ...common.reader import ReadImage
  18. from ..common import (
  19. StaticInfer,
  20. )
  21. from ..base import BasicPredictor
  22. from .processors import (
  23. MinMaxResize,
  24. LatexTestTransform,
  25. LatexImageFormat,
  26. LaTeXOCRDecode,
  27. NormalizeImage,
  28. ToBatch,
  29. UniMERNetImgDecode,
  30. UniMERNetDecode,
  31. UniMERNetTestTransform,
  32. UniMERNetImageFormat,
  33. )
  34. from .result import FormulaRecResult
  35. class FormulaRecPredictor(BasicPredictor):
  36. entities = MODELS
  37. _FUNC_MAP = {}
  38. register = FuncRegister(_FUNC_MAP)
  39. def __init__(self, *args, **kwargs):
  40. super().__init__(*args, **kwargs)
  41. self.pre_tfs, self.infer, self.post_op = self._build()
  42. def _build_batch_sampler(self):
  43. return ImageBatchSampler()
  44. def _get_result_class(self):
  45. return FormulaRecResult
  46. def _build(self):
  47. pre_tfs = {"Read": ReadImage(format="RGB")}
  48. for cfg in self.config["PreProcess"]["transform_ops"]:
  49. tf_key = list(cfg.keys())[0]
  50. assert tf_key in self._FUNC_MAP
  51. func = self._FUNC_MAP[tf_key]
  52. args = cfg.get(tf_key, {})
  53. name, op = func(self, **args) if args else func(self)
  54. if op:
  55. pre_tfs[name] = op
  56. pre_tfs["ToBatch"] = ToBatch()
  57. infer = StaticInfer(
  58. model_dir=self.model_dir,
  59. model_prefix=self.MODEL_FILE_PREFIX,
  60. option=self.pp_option,
  61. )
  62. post_op = self.build_postprocess(**self.config["PostProcess"])
  63. return pre_tfs, infer, post_op
  64. def process(self, batch_data):
  65. batch_raw_imgs = self.pre_tfs["Read"](imgs=batch_data)
  66. if self.model_name in ("LaTeX_OCR_rec"):
  67. batch_imgs = self.pre_tfs["MinMaxResize"](imgs=batch_raw_imgs)
  68. batch_imgs = self.pre_tfs["LatexTestTransform"](imgs=batch_imgs)
  69. batch_imgs = self.pre_tfs["NormalizeImage"](imgs=batch_imgs)
  70. batch_imgs = self.pre_tfs["LatexImageFormat"](imgs=batch_imgs)
  71. elif self.model_name in ("UniMERNet"):
  72. batch_imgs = self.pre_tfs["UniMERNetImgDecode"](imgs=batch_raw_imgs)
  73. batch_imgs = self.pre_tfs["UniMERNetTestTransform"](imgs=batch_imgs)
  74. batch_imgs = self.pre_tfs["UniMERNetImageFormat"](imgs=batch_imgs)
  75. elif self.model_name in ("PP-FormulaNet-S", "PP-FormulaNet-L"):
  76. batch_imgs = self.pre_tfs["UniMERNetImgDecode"](imgs=batch_raw_imgs)
  77. batch_imgs = self.pre_tfs["UniMERNetTestTransform"](imgs=batch_imgs)
  78. batch_imgs = self.pre_tfs["LatexImageFormat"](imgs=batch_imgs)
  79. x = self.pre_tfs["ToBatch"](imgs=batch_imgs)
  80. batch_preds = self.infer(x=x)
  81. batch_preds = [p.reshape([-1]) for p in batch_preds[0]]
  82. rec_formula = self.post_op(batch_preds)
  83. return {
  84. "input_path": batch_data,
  85. "input_img": batch_raw_imgs,
  86. "rec_formula": rec_formula,
  87. }
  88. @register("DecodeImage")
  89. def build_readimg(self, channel_first, img_mode):
  90. assert channel_first == False
  91. return "Read", ReadImage(format=img_mode)
  92. @register("MinMaxResize")
  93. def build_min_max_resize(self, min_dimensions, max_dimensions):
  94. return "MinMaxResize", MinMaxResize(
  95. min_dimensions=min_dimensions, max_dimensions=max_dimensions
  96. )
  97. @register("LatexTestTransform")
  98. def build_latex_test_transform(
  99. self,
  100. ):
  101. return "LatexTestTransform", LatexTestTransform()
  102. @register("NormalizeImage")
  103. def build_normalize(self, mean, std, order="chw"):
  104. return "NormalizeImage", NormalizeImage(mean=mean, std=std, order=order)
  105. @register("LatexImageFormat")
  106. def build_latexocr_imageformat(self):
  107. return "LatexImageFormat", LatexImageFormat()
  108. @register("UniMERNetImgDecode")
  109. def build_unimernet_decode(self, input_size):
  110. return "UniMERNetImgDecode", UniMERNetImgDecode(input_size)
  111. def build_postprocess(self, **kwargs):
  112. if kwargs.get("name") == "LaTeXOCRDecode":
  113. return LaTeXOCRDecode(
  114. character_list=kwargs.get("character_dict"),
  115. )
  116. elif kwargs.get("name") == "UniMERNetDecode":
  117. return UniMERNetDecode(
  118. character_list=kwargs.get("character_dict"),
  119. )
  120. else:
  121. raise Exception()
  122. @register("UniMERNetTestTransform")
  123. def build_unimernet_imageformat(self):
  124. return "UniMERNetTestTransform", UniMERNetTestTransform()
  125. @register("UniMERNetImageFormat")
  126. def build_unimernet_imageformat(self):
  127. return "UniMERNetImageFormat", UniMERNetImageFormat()
  128. @register("UniMERNetLabelEncode")
  129. def foo(self, *args, **kwargs):
  130. return None, None
  131. @register("KeepKeys")
  132. def foo(self, *args, **kwargs):
  133. return None, None