| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import shutil
- from pathlib import Path
- from ..base import BaseTrainer
- from ...utils.config import AttrDict
- from .model_list import MODELS
- class TextRecTrainer(BaseTrainer):
- """Text Recognition Model Trainer"""
- entities = MODELS
- def dump_label_dict(self, src_label_dict_path: str):
- """dump label dict config
- Args:
- src_label_dict_path (str): path to label dict file to be saved.
- """
- dst_label_dict_path = Path(self.global_config.output).joinpath("label_dict.txt")
- shutil.copyfile(src_label_dict_path, dst_label_dict_path)
- def update_config(self):
- """update training config"""
- if self.train_config.log_interval:
- self.pdx_config.update_log_interval(self.train_config.log_interval)
- if self.train_config.eval_interval:
- self.pdx_config._update_eval_interval_by_epoch(
- self.train_config.eval_interval
- )
- if self.train_config.save_interval:
- self.pdx_config.update_save_interval(self.train_config.save_interval)
- if self.global_config["model"] == "LaTeX_OCR_rec":
- self.pdx_config.update_dataset(
- self.global_config.dataset_dir, "LaTeXOCRDataSet"
- )
- elif "PP-OCRv3" in self.global_config["model"]:
- self.pdx_config.update_dataset(
- self.global_config.dataset_dir, "SimpleDataSet"
- )
- else:
- self.pdx_config.update_dataset(
- self.global_config.dataset_dir, "MSTextRecDataset"
- )
- label_dict_path = Path(self.global_config.dataset_dir).joinpath("dict.txt")
- if label_dict_path.exists():
- self.pdx_config.update_label_dict_path(label_dict_path)
- self.dump_label_dict(label_dict_path)
- if self.train_config.pretrain_weight_path:
- self.pdx_config.update_pretrained_weights(
- self.train_config.pretrain_weight_path
- )
- if self.global_config["model"] == "LaTeX_OCR_rec":
- if (
- self.train_config.batch_size_train is not None
- and self.train_config.batch_size_val
- ):
- self.pdx_config.update_batch_size_pair(
- self.train_config.batch_size_train, self.train_config.batch_size_val
- )
- else:
- if self.train_config.batch_size is not None:
- self.pdx_config.update_batch_size(self.train_config.batch_size)
- if self.train_config.learning_rate is not None:
- self.pdx_config.update_learning_rate(self.train_config.learning_rate)
- if self.train_config.epochs_iters is not None:
- self.pdx_config._update_epochs(self.train_config.epochs_iters)
- if (
- self.train_config.resume_path is not None
- and self.train_config.resume_path != ""
- ):
- self.pdx_config._update_checkpoints(self.train_config.resume_path)
- if self.global_config.output is not None:
- self.pdx_config._update_output_dir(self.global_config.output)
- def get_train_kwargs(self) -> dict:
- """get key-value arguments of model training function
- Returns:
- dict: the arguments of training function.
- """
- return {
- "device": self.get_device(),
- "dy2st": self.train_config.get("dy2st", False),
- }
|