pipeline.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Union
  15. import numpy as np
  16. from ....utils import logging
  17. from ....utils.deps import pipeline_requires_extra
  18. from ...common.batch_sampler import ImageBatchSampler
  19. from ...common.reader import ReadImage
  20. from ...utils.hpi import HPIConfig
  21. from ...utils.pp_option import PaddlePredictorOption
  22. from ..base import BasePipeline
  23. from ..components import (
  24. CropByPolys,
  25. SortPolyBoxes,
  26. SortQuadBoxes,
  27. convert_points_to_boxes,
  28. rotate_image,
  29. )
  30. from .result import OCRResult
  31. @pipeline_requires_extra("ocr")
  32. class OCRPipeline(BasePipeline):
  33. """OCR Pipeline"""
  34. entities = "OCR"
  35. def __init__(
  36. self,
  37. config: Dict,
  38. device: Optional[str] = None,
  39. pp_option: Optional[PaddlePredictorOption] = None,
  40. use_hpip: bool = False,
  41. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  42. ) -> None:
  43. """
  44. Initializes the class with given configurations and options.
  45. Args:
  46. config (Dict): Configuration dictionary containing various settings.
  47. device (str, optional): Device to run the predictions on. Defaults to None.
  48. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  49. use_hpip (bool, optional): Whether to use the high-performance
  50. inference plugin (HPIP) by default. Defaults to False.
  51. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  52. The default high-performance inference configuration dictionary.
  53. Defaults to None.
  54. """
  55. super().__init__(
  56. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  57. )
  58. self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
  59. if self.use_doc_preprocessor:
  60. doc_preprocessor_config = config.get("SubPipelines", {}).get(
  61. "DocPreprocessor",
  62. {
  63. "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
  64. },
  65. )
  66. self.doc_preprocessor_pipeline = self.create_pipeline(
  67. doc_preprocessor_config
  68. )
  69. self.use_textline_orientation = config.get("use_textline_orientation", True)
  70. if self.use_textline_orientation:
  71. textline_orientation_config = config.get("SubModules", {}).get(
  72. "TextLineOrientation",
  73. {"model_config_error": "config error for textline_orientation_model!"},
  74. )
  75. self.textline_orientation_model = self.create_model(
  76. textline_orientation_config
  77. )
  78. text_det_config = config.get("SubModules", {}).get(
  79. "TextDetection", {"model_config_error": "config error for text_det_model!"}
  80. )
  81. self.text_type = config["text_type"]
  82. if self.text_type == "general":
  83. self.text_det_limit_side_len = text_det_config.get("limit_side_len", 960)
  84. self.text_det_limit_type = text_det_config.get("limit_type", "max")
  85. self.text_det_thresh = text_det_config.get("thresh", 0.3)
  86. self.text_det_box_thresh = text_det_config.get("box_thresh", 0.6)
  87. self.input_shape = text_det_config.get("input_shape", None)
  88. self.text_det_unclip_ratio = text_det_config.get("unclip_ratio", 2.0)
  89. self._sort_boxes = SortQuadBoxes()
  90. self._crop_by_polys = CropByPolys(det_box_type="quad")
  91. elif self.text_type == "seal":
  92. self.text_det_limit_side_len = text_det_config.get("limit_side_len", 736)
  93. self.text_det_limit_type = text_det_config.get("limit_type", "min")
  94. self.text_det_thresh = text_det_config.get("thresh", 0.2)
  95. self.text_det_box_thresh = text_det_config.get("box_thresh", 0.6)
  96. self.text_det_unclip_ratio = text_det_config.get("unclip_ratio", 0.5)
  97. self.input_shape = text_det_config.get("input_shape", None)
  98. self._sort_boxes = SortPolyBoxes()
  99. self._crop_by_polys = CropByPolys(det_box_type="poly")
  100. else:
  101. raise ValueError("Unsupported text type {}".format(self.text_type))
  102. self.text_det_model = self.create_model(
  103. text_det_config,
  104. limit_side_len=self.text_det_limit_side_len,
  105. limit_type=self.text_det_limit_type,
  106. thresh=self.text_det_thresh,
  107. box_thresh=self.text_det_box_thresh,
  108. unclip_ratio=self.text_det_unclip_ratio,
  109. input_shape=self.input_shape,
  110. )
  111. text_rec_config = config.get("SubModules", {}).get(
  112. "TextRecognition",
  113. {"model_config_error": "config error for text_rec_model!"},
  114. )
  115. self.text_rec_score_thresh = text_rec_config.get("score_thresh", 0)
  116. self.input_shape = text_rec_config.get("input_shape", None)
  117. self.text_rec_model = self.create_model(
  118. text_rec_config, input_shape=self.input_shape
  119. )
  120. self.batch_sampler = ImageBatchSampler(batch_size=1)
  121. self.img_reader = ReadImage(format="BGR")
  122. def rotate_image(
  123. self, image_array_list: List[np.ndarray], rotate_angle_list: List[int]
  124. ) -> List[np.ndarray]:
  125. """
  126. Rotate the given image arrays by their corresponding angles.
  127. 0 corresponds to 0 degrees, 1 corresponds to 180 degrees.
  128. Args:
  129. image_array_list (List[np.ndarray]): A list of input image arrays to be rotated.
  130. rotate_angle_list (List[int]): A list of rotation indicators (0 or 1).
  131. 0 means rotate by 0 degrees
  132. 1 means rotate by 180 degrees
  133. Returns:
  134. List[np.ndarray]: A list of rotated image arrays.
  135. Raises:
  136. AssertionError: If any rotate_angle is not 0 or 1.
  137. AssertionError: If the lengths of input lists don't match.
  138. """
  139. assert len(image_array_list) == len(
  140. rotate_angle_list
  141. ), f"Length of image_array_list ({len(image_array_list)}) must match length of rotate_angle_list ({len(rotate_angle_list)})"
  142. for angle in rotate_angle_list:
  143. assert angle in [0, 1], f"rotate_angle must be 0 or 1, now it's {angle}"
  144. rotated_images = []
  145. for image_array, rotate_indicator in zip(image_array_list, rotate_angle_list):
  146. # Convert 0/1 indicator to actual rotation angle
  147. rotate_angle = rotate_indicator * 180
  148. rotated_image = rotate_image(image_array, rotate_angle)
  149. rotated_images.append(rotated_image)
  150. return rotated_images
  151. def check_model_settings_valid(self, model_settings: Dict) -> bool:
  152. """
  153. Check if the input parameters are valid based on the initialized models.
  154. Args:
  155. model_info_params(Dict): A dictionary containing input parameters.
  156. Returns:
  157. bool: True if all required models are initialized according to input parameters, False otherwise.
  158. """
  159. if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
  160. logging.error(
  161. "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
  162. )
  163. return False
  164. if (
  165. model_settings["use_textline_orientation"]
  166. and not self.use_textline_orientation
  167. ):
  168. logging.error(
  169. "Set use_textline_orientation, but the models for use_textline_orientation are not initialized."
  170. )
  171. return False
  172. return True
  173. def get_model_settings(
  174. self,
  175. use_doc_orientation_classify: Optional[bool],
  176. use_doc_unwarping: Optional[bool],
  177. use_textline_orientation: Optional[bool],
  178. ) -> dict:
  179. """
  180. Get the model settings based on the provided parameters or default values.
  181. Args:
  182. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  183. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  184. use_textline_orientation (Optional[bool]): Whether to use textline orientation.
  185. Returns:
  186. dict: A dictionary containing the model settings.
  187. """
  188. if use_doc_orientation_classify is None and use_doc_unwarping is None:
  189. use_doc_preprocessor = self.use_doc_preprocessor
  190. else:
  191. if use_doc_orientation_classify is True or use_doc_unwarping is True:
  192. use_doc_preprocessor = True
  193. else:
  194. use_doc_preprocessor = False
  195. if use_textline_orientation is None:
  196. use_textline_orientation = self.use_textline_orientation
  197. return dict(
  198. use_doc_preprocessor=use_doc_preprocessor,
  199. use_textline_orientation=use_textline_orientation,
  200. )
  201. def get_text_det_params(
  202. self,
  203. text_det_limit_side_len: Optional[int] = None,
  204. text_det_limit_type: Optional[str] = None,
  205. text_det_thresh: Optional[float] = None,
  206. text_det_box_thresh: Optional[float] = None,
  207. text_det_unclip_ratio: Optional[float] = None,
  208. ) -> dict:
  209. """
  210. Get text detection parameters.
  211. If a parameter is None, its default value from the instance will be used.
  212. Args:
  213. text_det_limit_side_len (Optional[int]): The maximum side length of the text box.
  214. text_det_limit_type (Optional[str]): The type of limit to apply to the text box.
  215. text_det_thresh (Optional[float]): The threshold for text detection.
  216. text_det_box_thresh (Optional[float]): The threshold for the bounding box.
  217. text_det_unclip_ratio (Optional[float]): The ratio for unclipping the text box.
  218. Returns:
  219. dict: A dictionary containing the text detection parameters.
  220. """
  221. if text_det_limit_side_len is None:
  222. text_det_limit_side_len = self.text_det_limit_side_len
  223. if text_det_limit_type is None:
  224. text_det_limit_type = self.text_det_limit_type
  225. if text_det_thresh is None:
  226. text_det_thresh = self.text_det_thresh
  227. if text_det_box_thresh is None:
  228. text_det_box_thresh = self.text_det_box_thresh
  229. if text_det_unclip_ratio is None:
  230. text_det_unclip_ratio = self.text_det_unclip_ratio
  231. return dict(
  232. limit_side_len=text_det_limit_side_len,
  233. limit_type=text_det_limit_type,
  234. thresh=text_det_thresh,
  235. box_thresh=text_det_box_thresh,
  236. unclip_ratio=text_det_unclip_ratio,
  237. )
  238. def predict(
  239. self,
  240. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  241. use_doc_orientation_classify: Optional[bool] = None,
  242. use_doc_unwarping: Optional[bool] = None,
  243. use_textline_orientation: Optional[bool] = None,
  244. text_det_limit_side_len: Optional[int] = None,
  245. text_det_limit_type: Optional[str] = None,
  246. text_det_thresh: Optional[float] = None,
  247. text_det_box_thresh: Optional[float] = None,
  248. text_det_unclip_ratio: Optional[float] = None,
  249. text_rec_score_thresh: Optional[float] = None,
  250. ) -> OCRResult:
  251. """
  252. Predict OCR results based on input images or arrays with optional preprocessing steps.
  253. Args:
  254. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): Input image of pdf path(s) or numpy array(s).
  255. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  256. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  257. use_textline_orientation (Optional[bool]): Whether to use textline orientation prediction.
  258. text_det_limit_side_len (Optional[int]): Maximum side length for text detection.
  259. text_det_limit_type (Optional[str]): Type of limit to apply for text detection.
  260. text_det_thresh (Optional[float]): Threshold for text detection.
  261. text_det_box_thresh (Optional[float]): Threshold for text detection boxes.
  262. text_det_unclip_ratio (Optional[float]): Ratio for unclipping text detection boxes.
  263. text_rec_score_thresh (Optional[float]): Score threshold for text recognition.
  264. Returns:
  265. OCRResult: Generator yielding OCR results for each input image.
  266. """
  267. model_settings = self.get_model_settings(
  268. use_doc_orientation_classify, use_doc_unwarping, use_textline_orientation
  269. )
  270. if not self.check_model_settings_valid(model_settings):
  271. yield {"error": "the input params for model settings are invalid!"}
  272. text_det_params = self.get_text_det_params(
  273. text_det_limit_side_len,
  274. text_det_limit_type,
  275. text_det_thresh,
  276. text_det_box_thresh,
  277. text_det_unclip_ratio,
  278. )
  279. if text_rec_score_thresh is None:
  280. text_rec_score_thresh = self.text_rec_score_thresh
  281. for img_id, batch_data in enumerate(self.batch_sampler(input)):
  282. image_array = self.img_reader(batch_data.instances)[0]
  283. if model_settings["use_doc_preprocessor"]:
  284. doc_preprocessor_res = next(
  285. self.doc_preprocessor_pipeline(
  286. image_array,
  287. use_doc_orientation_classify=use_doc_orientation_classify,
  288. use_doc_unwarping=use_doc_unwarping,
  289. )
  290. )
  291. else:
  292. doc_preprocessor_res = {"output_img": image_array}
  293. doc_preprocessor_image = doc_preprocessor_res["output_img"]
  294. det_res = next(
  295. self.text_det_model(doc_preprocessor_image, **text_det_params)
  296. )
  297. dt_polys = det_res["dt_polys"]
  298. det_res["dt_scores"]
  299. dt_polys = self._sort_boxes(dt_polys)
  300. single_img_res = {
  301. "input_path": batch_data.input_paths[0],
  302. "page_index": batch_data.page_indexes[0],
  303. "doc_preprocessor_res": doc_preprocessor_res,
  304. "dt_polys": dt_polys,
  305. "model_settings": model_settings,
  306. "text_det_params": text_det_params,
  307. "text_type": self.text_type,
  308. "text_rec_score_thresh": text_rec_score_thresh,
  309. }
  310. single_img_res["rec_texts"] = []
  311. single_img_res["rec_scores"] = []
  312. single_img_res["rec_polys"] = []
  313. if len(dt_polys) > 0:
  314. all_subs_of_img = list(
  315. self._crop_by_polys(doc_preprocessor_image, dt_polys)
  316. )
  317. # use textline orientation model
  318. if model_settings["use_textline_orientation"]:
  319. angles = [
  320. int(textline_angle_info["class_ids"][0])
  321. for textline_angle_info in self.textline_orientation_model(
  322. all_subs_of_img
  323. )
  324. ]
  325. all_subs_of_img = self.rotate_image(all_subs_of_img, angles)
  326. else:
  327. angles = [-1] * len(all_subs_of_img)
  328. single_img_res["textline_orientation_angles"] = angles
  329. sub_img_info_list = [
  330. {
  331. "sub_img_id": img_id,
  332. "sub_img_ratio": sub_img.shape[1] / float(sub_img.shape[0]),
  333. }
  334. for img_id, sub_img in enumerate(all_subs_of_img)
  335. ]
  336. sorted_subs_info = sorted(
  337. sub_img_info_list, key=lambda x: x["sub_img_ratio"]
  338. )
  339. sorted_subs_of_img = [
  340. all_subs_of_img[x["sub_img_id"]] for x in sorted_subs_info
  341. ]
  342. for idx, rec_res in enumerate(self.text_rec_model(sorted_subs_of_img)):
  343. sub_img_id = sorted_subs_info[idx]["sub_img_id"]
  344. sub_img_info_list[sub_img_id]["rec_res"] = rec_res
  345. for sno in range(len(sub_img_info_list)):
  346. rec_res = sub_img_info_list[sno]["rec_res"]
  347. if rec_res["rec_score"] >= text_rec_score_thresh:
  348. single_img_res["rec_texts"].append(rec_res["rec_text"])
  349. single_img_res["rec_scores"].append(rec_res["rec_score"])
  350. single_img_res["rec_polys"].append(dt_polys[sno])
  351. if self.text_type == "general":
  352. rec_boxes = convert_points_to_boxes(single_img_res["rec_polys"])
  353. single_img_res["rec_boxes"] = rec_boxes
  354. else:
  355. single_img_res["rec_boxes"] = np.array([])
  356. yield OCRResult(single_img_res)