pipeline.py 2.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Union
  15. import pandas as pd
  16. from ....utils.deps import pipeline_requires_extra
  17. from ...models.ts_anomaly_detection.result import TSAdResult
  18. from ...utils.hpi import HPIConfig
  19. from ...utils.pp_option import PaddlePredictorOption
  20. from ..base import BasePipeline
  21. @pipeline_requires_extra("ts")
  22. class TSAnomalyDetPipeline(BasePipeline):
  23. """TSAnomalyDetPipeline Pipeline"""
  24. entities = "ts_anomaly_detection"
  25. def __init__(
  26. self,
  27. config: Dict,
  28. device: str = None,
  29. pp_option: PaddlePredictorOption = None,
  30. use_hpip: bool = False,
  31. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  32. ) -> None:
  33. """Initializes the Time Series ad pipeline.
  34. Args:
  35. config (Dict): Configuration dictionary containing various settings.
  36. device (str, optional): Device to run the predictions on. Defaults to None.
  37. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  38. use_hpip (bool, optional): Whether to use the high-performance
  39. inference plugin (HPIP) by default. Defaults to False.
  40. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  41. The default high-performance inference configuration dictionary.
  42. Defaults to None.
  43. """
  44. super().__init__(
  45. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  46. )
  47. ts_ad_model_config = config["SubModules"]["TSAnomalyDetection"]
  48. self.ts_ad_model = self.create_model(ts_ad_model_config)
  49. def predict(
  50. self, input: Union[str, List[str], pd.DataFrame, List[pd.DataFrame]], **kwargs
  51. ) -> TSAdResult:
  52. """Predicts time series anomaly detection results for the given input.
  53. Args:
  54. input (Union[str, list[str], pd.DataFrame, list[pd.DataFrame]]): The input image(s) or path(s) to the images.
  55. **kwargs: Additional keyword arguments that can be passed to the function.
  56. Returns:
  57. TSAdResult: The predicted time series anomaly detection results.
  58. """
  59. yield from self.ts_ad_model(input)