table_recognition.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List
  15. from .....utils.deps import function_requires_deps, is_dep_available
  16. from ...infra import utils as serving_utils
  17. from ...infra.config import AppConfig
  18. from ...infra.models import AIStudioResultResponse
  19. from ...schemas.table_recognition import INFER_ENDPOINT, InferRequest, InferResult
  20. from .._app import create_app, primary_operation
  21. from ._common import common
  22. from ._common import ocr as ocr_common
  23. if is_dep_available("fastapi"):
  24. from fastapi import FastAPI
  25. @function_requires_deps("fastapi")
  26. def create_pipeline_app(pipeline: Any, app_config: AppConfig) -> "FastAPI":
  27. app, ctx = create_app(
  28. pipeline=pipeline, app_config=app_config, app_aiohttp_session=True
  29. )
  30. ocr_common.update_app_context(ctx)
  31. @primary_operation(
  32. app,
  33. INFER_ENDPOINT,
  34. "infer",
  35. )
  36. async def _infer(request: InferRequest) -> AIStudioResultResponse[InferResult]:
  37. pipeline = ctx.pipeline
  38. log_id = serving_utils.generate_log_id()
  39. images, data_info = await ocr_common.get_images(request, ctx)
  40. result = await pipeline.infer(
  41. images,
  42. use_doc_orientation_classify=request.useDocOrientationClassify,
  43. use_doc_unwarping=request.useDocUnwarping,
  44. use_layout_detection=request.useLayoutDetection,
  45. use_ocr_model=request.useOcrModel,
  46. text_det_limit_side_len=request.textDetLimitSideLen,
  47. text_det_limit_type=request.textDetLimitType,
  48. text_det_thresh=request.textDetThresh,
  49. text_det_box_thresh=request.textDetBoxThresh,
  50. text_det_unclip_ratio=request.textDetUnclipRatio,
  51. text_rec_score_thresh=request.textRecScoreThresh,
  52. use_ocr_results_with_table_cells=request.useOcrResultsWithTableCells,
  53. )
  54. table_rec_results: List[Dict[str, Any]] = []
  55. for i, (img, item) in enumerate(zip(images, result)):
  56. pruned_res = common.prune_result(item.json["res"])
  57. if ctx.config.visualize:
  58. imgs = {
  59. "input_img": img,
  60. **item.img,
  61. }
  62. imgs = await serving_utils.call_async(
  63. common.postprocess_images,
  64. imgs,
  65. log_id,
  66. filename_template=f"{{key}}_{i}.jpg",
  67. file_storage=ctx.extra["file_storage"],
  68. return_urls=ctx.extra["return_img_urls"],
  69. max_img_size=ctx.extra["max_output_img_size"],
  70. )
  71. else:
  72. imgs = {}
  73. table_rec_results.append(
  74. dict(
  75. prunedResult=pruned_res,
  76. outputImages=(
  77. {k: v for k, v in imgs.items() if k != "input_img"}
  78. if imgs
  79. else None
  80. ),
  81. inputImage=imgs.get("input_img"),
  82. )
  83. )
  84. return AIStudioResultResponse[InferResult](
  85. logId=log_id,
  86. result=InferResult(
  87. tableRecResults=table_rec_results,
  88. dataInfo=data_info,
  89. ),
  90. )
  91. return app