| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301 |
- // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "include/paddlex/transforms.h"
- #include <math.h>
- #include <iostream>
- #include <string>
- #include <vector>
- namespace PaddleX {
- std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR},
- {"NEAREST", cv::INTER_NEAREST},
- {"AREA", cv::INTER_AREA},
- {"CUBIC", cv::INTER_CUBIC},
- {"LANCZOS4", cv::INTER_LANCZOS4}};
- bool Normalize::Run(cv::Mat* im, ImageBlob* data) {
- std::vector<float> range_val;
- for (int c = 0; c < im->channels(); c++) {
- range_val.push_back(max_val_[c] - min_val_[c]);
- }
- std::vector<cv::Mat> split_im;
- cv::split(*im, split_im);
- #pragma omp parallel for num_threads(im->channels())
- for (int c = 0; c < im->channels(); c++) {
- float range_val = max_val_[c] - min_val_[c];
- cv::subtract(split_im[c], cv::Scalar(min_val_[c]), split_im[c]);
- cv::divide(split_im[c], cv::Scalar(range_val), split_im[c]);
- cv::subtract(split_im[c], cv::Scalar(mean_[c]), split_im[c]);
- cv::divide(split_im[c], cv::Scalar(std_[c]), split_im[c]);
- }
- cv::merge(split_im, *im);
- return true;
- }
- float ResizeByShort::GenerateScale(const cv::Mat& im) {
- int origin_w = im.cols;
- int origin_h = im.rows;
- int im_size_max = std::max(origin_w, origin_h);
- int im_size_min = std::min(origin_w, origin_h);
- float scale =
- static_cast<float>(short_size_) / static_cast<float>(im_size_min);
- if (max_size_ > 0) {
- if (round(scale * im_size_max) > max_size_) {
- scale = static_cast<float>(max_size_) / static_cast<float>(im_size_max);
- }
- }
- return scale;
- }
- bool ResizeByShort::Run(cv::Mat* im, ImageBlob* data) {
- data->im_size_before_resize_.push_back({im->rows, im->cols});
- data->reshape_order_.push_back("resize");
- float scale = GenerateScale(*im);
- int width = static_cast<int>(round(scale * im->cols));
- int height = static_cast<int>(round(scale * im->rows));
- cv::resize(*im, *im, cv::Size(width, height), 0, 0, cv::INTER_LINEAR);
- data->new_im_size_[0] = im->rows;
- data->new_im_size_[1] = im->cols;
- data->scale = scale;
- return true;
- }
- bool CenterCrop::Run(cv::Mat* im, ImageBlob* data) {
- int height = static_cast<int>(im->rows);
- int width = static_cast<int>(im->cols);
- if (height < height_ || width < width_) {
- std::cerr << "[CenterCrop] Image size less than crop size" << std::endl;
- return false;
- }
- int offset_x = static_cast<int>((width - width_) / 2);
- int offset_y = static_cast<int>((height - height_) / 2);
- cv::Rect crop_roi(offset_x, offset_y, width_, height_);
- *im = (*im)(crop_roi);
- data->new_im_size_[0] = im->rows;
- data->new_im_size_[1] = im->cols;
- return true;
- }
- bool Padding::Run(cv::Mat* im, ImageBlob* data) {
- data->im_size_before_resize_.push_back({im->rows, im->cols});
- data->reshape_order_.push_back("padding");
- int padding_w = 0;
- int padding_h = 0;
- if (width_ > 1 & height_ > 1) {
- padding_w = width_ - im->cols;
- padding_h = height_ - im->rows;
- } else if (coarsest_stride_ >= 1) {
- int h = im->rows;
- int w = im->cols;
- padding_h =
- ceil(h * 1.0 / coarsest_stride_) * coarsest_stride_ - im->rows;
- padding_w =
- ceil(w * 1.0 / coarsest_stride_) * coarsest_stride_ - im->cols;
- }
- if (padding_h < 0 || padding_w < 0) {
- std::cerr << "[Padding] Computed padding_h=" << padding_h
- << ", padding_w=" << padding_w
- << ", but they should be greater than 0." << std::endl;
- return false;
- }
- if (im->channels() < 5) {
- cv::Scalar value;
- if (im->channels() == 1) {
- value = cv::Scalar(im_value_[0]);
- } else if (im->channels() == 2) {
- value = cv::Scalar(im_value_[0], im_value_[1]);
- } else if (im->channels() == 3) {
- value = cv::Scalar(im_value_[0], im_value_[1], im_value_[2]);
- } else if (im->channels() == 4) {
- value = cv::Scalar(im_value_[0], im_value_[1], im_value_[2],
- im_value_[3]);
- }
- cv::copyMakeBorder(
- *im,
- *im,
- 0,
- padding_h,
- 0,
- padding_w,
- cv::BORDER_CONSTANT,
- value);
- } else {
- std::vector<cv::Mat> padded_im_per_channel(im->channels());
- #pragma omp parallel for num_threads(im->channels())
- for (size_t i = 0; i < im->channels(); i++) {
- const cv::Mat per_channel = cv::Mat(im->rows + padding_h,
- im->cols + padding_w,
- CV_32FC1,
- cv::Scalar(im_value_[i]));
- padded_im_per_channel[i] = per_channel;
- }
- cv::Mat padded_im;
- cv::merge(padded_im_per_channel, padded_im);
- cv::Rect im_roi = cv::Rect(0, 0, im->cols, im->rows);
- im->copyTo(padded_im(im_roi));
- *im = padded_im;
- }
- data->new_im_size_[0] = im->rows;
- data->new_im_size_[1] = im->cols;
- return true;
- }
- bool ResizeByLong::Run(cv::Mat* im, ImageBlob* data) {
- if (long_size_ <= 0) {
- std::cerr << "[ResizeByLong] long_size should be greater than 0"
- << std::endl;
- return false;
- }
- data->im_size_before_resize_.push_back({im->rows, im->cols});
- data->reshape_order_.push_back("resize");
- int origin_w = im->cols;
- int origin_h = im->rows;
- int im_size_max = std::max(origin_w, origin_h);
- float scale =
- static_cast<float>(long_size_) / static_cast<float>(im_size_max);
- cv::resize(*im, *im, cv::Size(), scale, scale, cv::INTER_NEAREST);
- data->new_im_size_[0] = im->rows;
- data->new_im_size_[1] = im->cols;
- data->scale = scale;
- return true;
- }
- bool Resize::Run(cv::Mat* im, ImageBlob* data) {
- if (width_ <= 0 || height_ <= 0) {
- std::cerr << "[Resize] width and height should be greater than 0"
- << std::endl;
- return false;
- }
- if (interpolations.count(interp_) <= 0) {
- std::cerr << "[Resize] Invalid interpolation method: '" << interp_ << "'"
- << std::endl;
- return false;
- }
- data->im_size_before_resize_.push_back({im->rows, im->cols});
- data->reshape_order_.push_back("resize");
- cv::resize(
- *im, *im, cv::Size(width_, height_), 0, 0, interpolations[interp_]);
- data->new_im_size_[0] = im->rows;
- data->new_im_size_[1] = im->cols;
- return true;
- }
- bool Clip::Run(cv::Mat* im, ImageBlob* data) {
- std::vector<cv::Mat> split_im;
- cv::split(*im, split_im);
- for (int c = 0; c < im->channels(); c++) {
- cv::threshold(split_im[c], split_im[c], max_val_[c], max_val_[c],
- cv::THRESH_TRUNC);
- cv::subtract(cv::Scalar(0), split_im[c], split_im[c]);
- cv::threshold(split_im[c], split_im[c], min_val_[c], min_val_[c],
- cv::THRESH_TRUNC);
- cv::divide(split_im[c], cv::Scalar(-1), split_im[c]);
- }
- cv::merge(split_im, *im);
- return true;
- }
- void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) {
- transforms_.clear();
- to_rgb_ = to_rgb;
- for (const auto& item : transforms_node) {
- std::string name = item.begin()->first.as<std::string>();
- if (name == "ArrangeClassifier") {
- continue;
- }
- if (name == "ArrangeSegmenter") {
- continue;
- }
- if (name == "ArrangeFasterRCNN") {
- continue;
- }
- if (name == "ArrangeMaskRCNN") {
- continue;
- }
- if (name == "ArrangeYOLOv3") {
- continue;
- }
- std::shared_ptr<Transform> transform = CreateTransform(name);
- transform->Init(item.begin()->second);
- transforms_.push_back(transform);
- }
- }
- std::shared_ptr<Transform> Transforms::CreateTransform(
- const std::string& transform_name) {
- if (transform_name == "Normalize") {
- return std::make_shared<Normalize>();
- } else if (transform_name == "ResizeByShort") {
- return std::make_shared<ResizeByShort>();
- } else if (transform_name == "CenterCrop") {
- return std::make_shared<CenterCrop>();
- } else if (transform_name == "Resize") {
- return std::make_shared<Resize>();
- } else if (transform_name == "Padding") {
- return std::make_shared<Padding>();
- } else if (transform_name == "ResizeByLong") {
- return std::make_shared<ResizeByLong>();
- } else if (transform_name == "Clip") {
- return std::make_shared<Clip>();
- } else {
- std::cerr << "There's unexpected transform(name='" << transform_name
- << "')." << std::endl;
- exit(-1);
- }
- }
- bool Transforms::Run(cv::Mat* im, ImageBlob* data) {
- // do all preprocess ops by order
- if (to_rgb_) {
- cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB);
- }
- (*im).convertTo(*im, CV_32FC(im->channels()));
- data->ori_im_size_[0] = im->rows;
- data->ori_im_size_[1] = im->cols;
- data->new_im_size_[0] = im->rows;
- data->new_im_size_[1] = im->cols;
- for (int i = 0; i < transforms_.size(); ++i) {
- if (!transforms_[i]->Run(im, data)) {
- std::cerr << "Apply transforms to image failed!" << std::endl;
- return false;
- }
- }
- // data format NHWC to NCHW
- // img data save to ImageBlob
- int h = im->rows;
- int w = im->cols;
- int c = im->channels();
- (data->im_data_).resize(c * h * w);
- float* ptr = (data->im_data_).data();
- for (int i = 0; i < c; ++i) {
- cv::extractChannel(*im, cv::Mat(h, w, CV_32FC1, ptr + i * h * w), i);
- }
- return true;
- }
- } // namespace PaddleX
|