general_recognition.py 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from ...utils.func_register import FuncRegister
  16. from ...modules.general_recognition.model_list import MODELS
  17. from ..components import *
  18. from ..results import BaseResult
  19. from .base import BasicPredictor
  20. class ShiTuRecPredictor(BasicPredictor):
  21. entities = MODELS
  22. _FUNC_MAP = {}
  23. register = FuncRegister(_FUNC_MAP)
  24. def _build_components(self):
  25. self._add_component(ReadImage(format="RGB"))
  26. for cfg in self.config["PreProcess"]["transform_ops"]:
  27. tf_key = list(cfg.keys())[0]
  28. func = self._FUNC_MAP[tf_key]
  29. args = cfg.get(tf_key, {})
  30. op = func(self, **args) if args else func(self)
  31. self._add_component(op)
  32. predictor = ImagePredictor(
  33. model_dir=self.model_dir,
  34. model_prefix=self.MODEL_FILE_PREFIX,
  35. option=self.pp_option,
  36. )
  37. self._add_component(predictor)
  38. post_processes = self.config["PostProcess"]
  39. for key in post_processes:
  40. func = self._FUNC_MAP.get(key)
  41. args = post_processes.get(key, {})
  42. op = func(self, **args) if args else func(self)
  43. self._add_component(op)
  44. @register("ResizeImage")
  45. # TODO(gaotingquan): backend & interpolation
  46. def build_resize(
  47. self,
  48. resize_short=None,
  49. size=None,
  50. backend="cv2",
  51. interpolation="LINEAR",
  52. return_numpy=False,
  53. ):
  54. assert resize_short or size
  55. if resize_short:
  56. op = ResizeByShort(
  57. target_short_edge=resize_short, size_divisor=None, interp="LINEAR"
  58. )
  59. else:
  60. op = Resize(target_size=size)
  61. return op
  62. @register("CropImage")
  63. def build_crop(self, size=224):
  64. return Crop(crop_size=size)
  65. @register("NormalizeImage")
  66. def build_normalize(
  67. self,
  68. mean=[0.485, 0.456, 0.406],
  69. std=[0.229, 0.224, 0.225],
  70. scale=1 / 255,
  71. order="",
  72. channel_num=3,
  73. ):
  74. assert channel_num == 3
  75. return Normalize(mean=mean, std=std)
  76. @register("ToCHWImage")
  77. def build_to_chw(self):
  78. return ToCHWImage()
  79. @register("NormalizeFeatures")
  80. def build_normalize_features(self):
  81. return NormalizeFeatures()
  82. def _pack_res(self, data):
  83. keys = ["img_path", "rec_feature"]
  84. return BaseResult({key: data[key] for key in keys})