| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from .base import BasePipeline
- from .ocr import OCRPipeline
- from ..components import CropByBoxes
- from ..results import SealOCRResult
- from ...utils import logging
- def get_ocr_res(pipeline, input):
- """get ocr res"""
- ocr_res_list = []
- if isinstance(input, list):
- img = [im["img"] for im in input]
- elif isinstance(input, dict):
- img = input["img"]
- else:
- img = input
- for ocr_res in pipeline(img):
- ocr_res_list.append(ocr_res)
- return ocr_res_list
- class SealOCRPipeline(BasePipeline):
- """Seal Recognition Pipeline"""
- entities = "seal_recognition"
- def __init__(
- self,
- layout_model,
- text_det_model,
- text_rec_model,
- layout_batch_size=1,
- text_det_batch_size=1,
- text_rec_batch_size=1,
- device=None,
- predictor_kwargs=None,
- ):
- super().__init__(device, predictor_kwargs)
- self._build_predictor(
- layout_model=layout_model,
- text_det_model=text_det_model,
- text_rec_model=text_rec_model,
- layout_batch_size=layout_batch_size,
- text_det_batch_size=text_det_batch_size,
- text_rec_batch_size=text_rec_batch_size,
- )
- self.set_predictor(
- layout_batch_size=layout_batch_size,
- text_det_batch_size=text_det_batch_size,
- text_rec_batch_size=text_rec_batch_size,
- )
- def _build_predictor(
- self,
- layout_model,
- text_det_model,
- text_rec_model,
- layout_batch_size,
- text_det_batch_size,
- text_rec_batch_size,
- ):
- self.layout_predictor = self._create(model=layout_model)
- self.ocr_pipeline = self._create(
- pipeline=OCRPipeline,
- text_det_model=text_det_model,
- text_rec_model=text_rec_model,
- )
- self._crop_by_boxes = CropByBoxes()
- def set_predictor(
- self,
- layout_batch_size=None,
- text_det_batch_size=None,
- text_rec_batch_size=None,
- device=None,
- ):
- if text_det_batch_size and text_det_batch_size > 1:
- logging.warning(
- f"text det model only support batch_size=1 now,the setting of text_det_batch_size={text_det_batch_size} will not using! "
- )
- if layout_batch_size:
- self.layout_predictor.set_predictor(batch_size=layout_batch_size)
- if text_rec_batch_size:
- self.ocr_pipeline.text_rec_model.set_predictor(
- batch_size=text_rec_batch_size
- )
- if device:
- self.layout_predictor.set_predictor(device=device)
- self.ocr_pipeline.set_predictor(device=device)
- def predict(self, x, **kwargs):
- self.set_predictor(**kwargs)
- for layout_pred in self.layout_predictor(x):
- single_img_res = {
- "input_path": "",
- "layout_result": {},
- "ocr_result": {},
- }
- # update layout result
- single_img_res["input_path"] = layout_pred["input_path"]
- single_img_res["layout_result"] = layout_pred
- seal_subs = []
- if len(layout_pred["boxes"]) > 0:
- subs_of_img = list(self._crop_by_boxes(layout_pred))
- # get cropped images with label "seal"
- for sub in subs_of_img:
- box = sub["box"]
- if sub["label"].lower() == "seal":
- seal_subs.append(sub)
- all_seal_ocr_res = get_ocr_res(self.ocr_pipeline, seal_subs)
- single_img_res["ocr_result"] = all_seal_ocr_res
- yield SealOCRResult(single_img_res)
|