pipeline.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Union
  15. import numpy as np
  16. from ....utils import logging
  17. from ....utils.deps import pipeline_requires_extra
  18. from ...common.batch_sampler import ImageBatchSampler
  19. from ...common.reader import ReadImage
  20. from ...utils.benchmark import benchmark
  21. from ...utils.hpi import HPIConfig
  22. from ...utils.pp_option import PaddlePredictorOption
  23. from .._parallel import AutoParallelImageSimpleInferencePipeline
  24. from ..base import BasePipeline
  25. from ..components import (
  26. CropByPolys,
  27. SortPolyBoxes,
  28. SortQuadBoxes,
  29. convert_points_to_boxes,
  30. rotate_image,
  31. )
  32. from .result import OCRResult
  33. @benchmark.time_methods
  34. class _OCRPipeline(BasePipeline):
  35. """OCR Pipeline"""
  36. def __init__(
  37. self,
  38. config: Dict,
  39. device: Optional[str] = None,
  40. pp_option: Optional[PaddlePredictorOption] = None,
  41. use_hpip: bool = False,
  42. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  43. ) -> None:
  44. """
  45. Initializes the class with given configurations and options.
  46. Args:
  47. config (Dict): Configuration dictionary containing various settings.
  48. device (str, optional): Device to run the predictions on. Defaults to None.
  49. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  50. use_hpip (bool, optional): Whether to use the high-performance
  51. inference plugin (HPIP) by default. Defaults to False.
  52. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  53. The default high-performance inference configuration dictionary.
  54. Defaults to None.
  55. """
  56. super().__init__(
  57. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  58. )
  59. self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
  60. if self.use_doc_preprocessor:
  61. doc_preprocessor_config = config.get("SubPipelines", {}).get(
  62. "DocPreprocessor",
  63. {
  64. "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
  65. },
  66. )
  67. self.doc_preprocessor_pipeline = self.create_pipeline(
  68. doc_preprocessor_config
  69. )
  70. self.use_textline_orientation = config.get("use_textline_orientation", True)
  71. if self.use_textline_orientation:
  72. textline_orientation_config = config.get("SubModules", {}).get(
  73. "TextLineOrientation",
  74. {"model_config_error": "config error for textline_orientation_model!"},
  75. )
  76. self.textline_orientation_model = self.create_model(
  77. textline_orientation_config
  78. )
  79. text_det_config = config.get("SubModules", {}).get(
  80. "TextDetection", {"model_config_error": "config error for text_det_model!"}
  81. )
  82. self.text_type = config["text_type"]
  83. if self.text_type == "general":
  84. self.text_det_limit_side_len = text_det_config.get("limit_side_len", 960)
  85. self.text_det_limit_type = text_det_config.get("limit_type", "max")
  86. self.text_det_max_side_limit = text_det_config.get("max_side_limit", 4000)
  87. self.text_det_thresh = text_det_config.get("thresh", 0.3)
  88. self.text_det_box_thresh = text_det_config.get("box_thresh", 0.6)
  89. self.input_shape = text_det_config.get("input_shape", None)
  90. self.text_det_unclip_ratio = text_det_config.get("unclip_ratio", 2.0)
  91. self._sort_boxes = SortQuadBoxes()
  92. self._crop_by_polys = CropByPolys(det_box_type="quad")
  93. elif self.text_type == "seal":
  94. self.text_det_limit_side_len = text_det_config.get("limit_side_len", 736)
  95. self.text_det_limit_type = text_det_config.get("limit_type", "min")
  96. self.text_det_max_side_limit = text_det_config.get("max_side_limit", 4000)
  97. self.text_det_thresh = text_det_config.get("thresh", 0.2)
  98. self.text_det_box_thresh = text_det_config.get("box_thresh", 0.6)
  99. self.text_det_unclip_ratio = text_det_config.get("unclip_ratio", 0.5)
  100. self.input_shape = text_det_config.get("input_shape", None)
  101. self._sort_boxes = SortPolyBoxes()
  102. self._crop_by_polys = CropByPolys(det_box_type="poly")
  103. else:
  104. raise ValueError("Unsupported text type {}".format(self.text_type))
  105. self.text_det_model = self.create_model(
  106. text_det_config,
  107. limit_side_len=self.text_det_limit_side_len,
  108. limit_type=self.text_det_limit_type,
  109. max_side_limit=self.text_det_max_side_limit,
  110. thresh=self.text_det_thresh,
  111. box_thresh=self.text_det_box_thresh,
  112. unclip_ratio=self.text_det_unclip_ratio,
  113. input_shape=self.input_shape,
  114. )
  115. text_rec_config = config.get("SubModules", {}).get(
  116. "TextRecognition",
  117. {"model_config_error": "config error for text_rec_model!"},
  118. )
  119. self.text_rec_score_thresh = text_rec_config.get("score_thresh", 0)
  120. self.input_shape = text_rec_config.get("input_shape", None)
  121. self.text_rec_model = self.create_model(
  122. text_rec_config, input_shape=self.input_shape
  123. )
  124. self.batch_sampler = ImageBatchSampler(batch_size=config.get("batch_size", 1))
  125. self.img_reader = ReadImage(format="BGR")
  126. def rotate_image(
  127. self, image_array_list: List[np.ndarray], rotate_angle_list: List[int]
  128. ) -> List[np.ndarray]:
  129. """
  130. Rotate the given image arrays by their corresponding angles.
  131. 0 corresponds to 0 degrees, 1 corresponds to 180 degrees.
  132. Args:
  133. image_array_list (List[np.ndarray]): A list of input image arrays to be rotated.
  134. rotate_angle_list (List[int]): A list of rotation indicators (0 or 1).
  135. 0 means rotate by 0 degrees
  136. 1 means rotate by 180 degrees
  137. Returns:
  138. List[np.ndarray]: A list of rotated image arrays.
  139. Raises:
  140. AssertionError: If any rotate_angle is not 0 or 1.
  141. AssertionError: If the lengths of input lists don't match.
  142. """
  143. assert len(image_array_list) == len(
  144. rotate_angle_list
  145. ), f"Length of image_array_list ({len(image_array_list)}) must match length of rotate_angle_list ({len(rotate_angle_list)})"
  146. for angle in rotate_angle_list:
  147. assert angle in [0, 1], f"rotate_angle must be 0 or 1, now it's {angle}"
  148. rotated_images = []
  149. for image_array, rotate_indicator in zip(image_array_list, rotate_angle_list):
  150. # Convert 0/1 indicator to actual rotation angle
  151. rotate_angle = rotate_indicator * 180
  152. rotated_image = rotate_image(image_array, rotate_angle)
  153. rotated_images.append(rotated_image)
  154. return rotated_images
  155. def check_model_settings_valid(self, model_settings: Dict) -> bool:
  156. """
  157. Check if the input parameters are valid based on the initialized models.
  158. Args:
  159. model_info_params(Dict): A dictionary containing input parameters.
  160. Returns:
  161. bool: True if all required models are initialized according to input parameters, False otherwise.
  162. """
  163. if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
  164. logging.error(
  165. "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
  166. )
  167. return False
  168. if (
  169. model_settings["use_textline_orientation"]
  170. and not self.use_textline_orientation
  171. ):
  172. logging.error(
  173. "Set use_textline_orientation, but the models for use_textline_orientation are not initialized."
  174. )
  175. return False
  176. return True
  177. def get_model_settings(
  178. self,
  179. use_doc_orientation_classify: Optional[bool],
  180. use_doc_unwarping: Optional[bool],
  181. use_textline_orientation: Optional[bool],
  182. ) -> dict:
  183. """
  184. Get the model settings based on the provided parameters or default values.
  185. Args:
  186. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  187. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  188. use_textline_orientation (Optional[bool]): Whether to use textline orientation.
  189. Returns:
  190. dict: A dictionary containing the model settings.
  191. """
  192. if use_doc_orientation_classify is None and use_doc_unwarping is None:
  193. use_doc_preprocessor = self.use_doc_preprocessor
  194. else:
  195. if use_doc_orientation_classify is True or use_doc_unwarping is True:
  196. use_doc_preprocessor = True
  197. else:
  198. use_doc_preprocessor = False
  199. if use_textline_orientation is None:
  200. use_textline_orientation = self.use_textline_orientation
  201. return dict(
  202. use_doc_preprocessor=use_doc_preprocessor,
  203. use_textline_orientation=use_textline_orientation,
  204. )
  205. def get_text_det_params(
  206. self,
  207. text_det_limit_side_len: Optional[int] = None,
  208. text_det_limit_type: Optional[str] = None,
  209. text_det_max_side_limit: Optional[int] = None,
  210. text_det_thresh: Optional[float] = None,
  211. text_det_box_thresh: Optional[float] = None,
  212. text_det_unclip_ratio: Optional[float] = None,
  213. ) -> dict:
  214. """
  215. Get text detection parameters.
  216. If a parameter is None, its default value from the instance will be used.
  217. Args:
  218. text_det_limit_side_len (Optional[int]): The maximum side length of the text box.
  219. text_det_limit_type (Optional[str]): The type of limit to apply to the text box.
  220. text_det_max_side_limit (Optional[int]): The maximum side length of the text box.
  221. text_det_thresh (Optional[float]): The threshold for text detection.
  222. text_det_box_thresh (Optional[float]): The threshold for the bounding box.
  223. text_det_unclip_ratio (Optional[float]): The ratio for unclipping the text box.
  224. Returns:
  225. dict: A dictionary containing the text detection parameters.
  226. """
  227. if text_det_limit_side_len is None:
  228. text_det_limit_side_len = self.text_det_limit_side_len
  229. if text_det_limit_type is None:
  230. text_det_limit_type = self.text_det_limit_type
  231. if text_det_max_side_limit is None:
  232. text_det_max_side_limit = self.text_det_max_side_limit
  233. if text_det_thresh is None:
  234. text_det_thresh = self.text_det_thresh
  235. if text_det_box_thresh is None:
  236. text_det_box_thresh = self.text_det_box_thresh
  237. if text_det_unclip_ratio is None:
  238. text_det_unclip_ratio = self.text_det_unclip_ratio
  239. return dict(
  240. limit_side_len=text_det_limit_side_len,
  241. limit_type=text_det_limit_type,
  242. thresh=text_det_thresh,
  243. max_side_limit=text_det_max_side_limit,
  244. box_thresh=text_det_box_thresh,
  245. unclip_ratio=text_det_unclip_ratio,
  246. )
  247. def predict(
  248. self,
  249. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  250. use_doc_orientation_classify: Optional[bool] = None,
  251. use_doc_unwarping: Optional[bool] = None,
  252. use_textline_orientation: Optional[bool] = None,
  253. text_det_limit_side_len: Optional[int] = None,
  254. text_det_limit_type: Optional[str] = None,
  255. text_det_max_side_limit: Optional[int] = None,
  256. text_det_thresh: Optional[float] = None,
  257. text_det_box_thresh: Optional[float] = None,
  258. text_det_unclip_ratio: Optional[float] = None,
  259. text_rec_score_thresh: Optional[float] = None,
  260. ) -> OCRResult:
  261. """
  262. Predict OCR results based on input images or arrays with optional preprocessing steps.
  263. Args:
  264. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): Input image of pdf path(s) or numpy array(s).
  265. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  266. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  267. use_textline_orientation (Optional[bool]): Whether to use textline orientation prediction.
  268. text_det_limit_side_len (Optional[int]): Maximum side length for text detection.
  269. text_det_limit_type (Optional[str]): Type of limit to apply for text detection.
  270. text_det_max_side_limit (Optional[int]): Maximum side length for text detection.
  271. text_det_thresh (Optional[float]): Threshold for text detection.
  272. text_det_box_thresh (Optional[float]): Threshold for text detection boxes.
  273. text_det_unclip_ratio (Optional[float]): Ratio for unclipping text detection boxes.
  274. text_rec_score_thresh (Optional[float]): Score threshold for text recognition.
  275. Returns:
  276. OCRResult: Generator yielding OCR results for each input image.
  277. """
  278. model_settings = self.get_model_settings(
  279. use_doc_orientation_classify, use_doc_unwarping, use_textline_orientation
  280. )
  281. if not self.check_model_settings_valid(model_settings):
  282. yield {"error": "the input params for model settings are invalid!"}
  283. text_det_params = self.get_text_det_params(
  284. text_det_limit_side_len,
  285. text_det_limit_type,
  286. text_det_max_side_limit,
  287. text_det_thresh,
  288. text_det_box_thresh,
  289. text_det_unclip_ratio,
  290. )
  291. if text_rec_score_thresh is None:
  292. text_rec_score_thresh = self.text_rec_score_thresh
  293. for _, batch_data in enumerate(self.batch_sampler(input)):
  294. image_arrays = self.img_reader(batch_data.instances)
  295. if model_settings["use_doc_preprocessor"]:
  296. doc_preprocessor_results = list(
  297. self.doc_preprocessor_pipeline(
  298. image_arrays,
  299. use_doc_orientation_classify=use_doc_orientation_classify,
  300. use_doc_unwarping=use_doc_unwarping,
  301. )
  302. )
  303. else:
  304. doc_preprocessor_results = [{"output_img": arr} for arr in image_arrays]
  305. doc_preprocessor_images = [
  306. item["output_img"] for item in doc_preprocessor_results
  307. ]
  308. det_results = list(
  309. self.text_det_model(doc_preprocessor_images, **text_det_params)
  310. )
  311. dt_polys_list = [item["dt_polys"] for item in det_results]
  312. dt_polys_list = [self._sort_boxes(item) for item in dt_polys_list]
  313. results = [
  314. {
  315. "input_path": input_path,
  316. "page_index": page_index,
  317. "doc_preprocessor_res": doc_preprocessor_res,
  318. "dt_polys": dt_polys,
  319. "model_settings": model_settings,
  320. "text_det_params": text_det_params,
  321. "text_type": self.text_type,
  322. "text_rec_score_thresh": text_rec_score_thresh,
  323. "rec_texts": [],
  324. "rec_scores": [],
  325. "rec_polys": [],
  326. "vis_fonts": [],
  327. }
  328. for input_path, page_index, doc_preprocessor_res, dt_polys in zip(
  329. batch_data.input_paths,
  330. batch_data.page_indexes,
  331. doc_preprocessor_results,
  332. dt_polys_list,
  333. )
  334. ]
  335. indices = list(range(len(doc_preprocessor_images)))
  336. indices = [idx for idx in indices if len(dt_polys_list[idx]) > 0]
  337. if indices:
  338. all_subs_of_imgs = []
  339. chunk_indices = [0]
  340. for idx in indices:
  341. all_subs_of_img = list(
  342. self._crop_by_polys(
  343. doc_preprocessor_images[idx], dt_polys_list[idx]
  344. )
  345. )
  346. all_subs_of_imgs.extend(all_subs_of_img)
  347. chunk_indices.append(chunk_indices[-1] + len(all_subs_of_img))
  348. # use textline orientation model
  349. if model_settings["use_textline_orientation"]:
  350. angles = [
  351. int(textline_angle_info["class_ids"][0])
  352. for textline_angle_info in self.textline_orientation_model(
  353. all_subs_of_imgs
  354. )
  355. ]
  356. all_subs_of_imgs = self.rotate_image(all_subs_of_imgs, angles)
  357. else:
  358. angles = [-1] * len(all_subs_of_imgs)
  359. for i, idx in enumerate(indices):
  360. res = results[idx]
  361. res["textline_orientation_angles"] = angles[
  362. chunk_indices[i] : chunk_indices[i + 1]
  363. ]
  364. # TODO: Process all sub-images in the batch together
  365. for i, idx in enumerate(indices):
  366. all_subs_of_img = all_subs_of_imgs[
  367. chunk_indices[i] : chunk_indices[i + 1]
  368. ]
  369. res = results[idx]
  370. dt_polys = dt_polys_list[idx]
  371. sub_img_info_list = [
  372. {
  373. "sub_img_id": img_id,
  374. "sub_img_ratio": sub_img.shape[1] / float(sub_img.shape[0]),
  375. }
  376. for img_id, sub_img in enumerate(all_subs_of_img)
  377. ]
  378. sorted_subs_info = sorted(
  379. sub_img_info_list, key=lambda x: x["sub_img_ratio"]
  380. )
  381. sorted_subs_of_img = [
  382. all_subs_of_img[x["sub_img_id"]] for x in sorted_subs_info
  383. ]
  384. for i, rec_res in enumerate(
  385. self.text_rec_model(sorted_subs_of_img)
  386. ):
  387. sub_img_id = sorted_subs_info[i]["sub_img_id"]
  388. sub_img_info_list[sub_img_id]["rec_res"] = rec_res
  389. for sno in range(len(sub_img_info_list)):
  390. rec_res = sub_img_info_list[sno]["rec_res"]
  391. if rec_res["rec_score"] >= text_rec_score_thresh:
  392. res["rec_texts"].append(rec_res["rec_text"])
  393. res["rec_scores"].append(rec_res["rec_score"])
  394. res["vis_fonts"].append(rec_res["vis_font"])
  395. res["rec_polys"].append(dt_polys[sno])
  396. for res in results:
  397. if self.text_type == "general":
  398. rec_boxes = convert_points_to_boxes(res["rec_polys"])
  399. res["rec_boxes"] = rec_boxes
  400. else:
  401. res["rec_boxes"] = np.array([])
  402. yield OCRResult(res)
  403. @pipeline_requires_extra("ocr", alt="ocr-core")
  404. class OCRPipeline(AutoParallelImageSimpleInferencePipeline):
  405. entities = "OCR"
  406. @property
  407. def _pipeline_cls(self):
  408. return _OCRPipeline
  409. def _get_batch_size(self, config):
  410. return config.get("batch_size", 1)