pretrain_weights.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113
  1. import paddlex
  2. import paddlehub as hub
  3. import os
  4. import os.path as osp
  5. image_pretrain = {
  6. 'ResNet18':
  7. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar',
  8. 'ResNet34':
  9. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar',
  10. 'ResNet50':
  11. 'http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar',
  12. 'ResNet101':
  13. 'http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar',
  14. 'ResNet50_vd':
  15. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar',
  16. 'ResNet101_vd':
  17. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar',
  18. 'MobileNetV1':
  19. 'http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar',
  20. 'MobileNetV2_x1.0':
  21. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar',
  22. 'MobileNetV2_x0.5':
  23. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar',
  24. 'MobileNetV2_x2.0':
  25. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar',
  26. 'MobileNetV2_x0.25':
  27. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar',
  28. 'MobileNetV2_x1.5':
  29. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar',
  30. 'MobileNetV3_small':
  31. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar',
  32. 'MobileNetV3_large':
  33. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar',
  34. 'DarkNet53':
  35. 'https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar',
  36. 'DenseNet121':
  37. 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar',
  38. 'DenseNet161':
  39. 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar',
  40. 'DenseNet201':
  41. 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar',
  42. 'DetResNet50':
  43. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar',
  44. 'SegXception41':
  45. 'https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar',
  46. 'SegXception65':
  47. 'https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar',
  48. 'ShuffleNetV2':
  49. 'https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar',
  50. }
  51. coco_pretrain = {
  52. 'UNet': 'https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz'
  53. }
  54. def get_pretrain_weights(flag, model_type, backbone, save_dir):
  55. if flag is None:
  56. return None
  57. elif osp.isdir(flag):
  58. return flag
  59. elif flag == 'IMAGENET':
  60. new_save_dir = save_dir
  61. if hasattr(paddlex, 'pretrain_dir'):
  62. new_save_dir = paddlex.pretrain_dir
  63. if backbone.startswith('Xception'):
  64. backbone = 'Seg{}'.format(backbone)
  65. elif backbone == 'MobileNetV2':
  66. backbone = 'MobileNetV2_x1.0'
  67. if model_type == 'detector':
  68. if backbone == 'ResNet50':
  69. backbone = 'DetResNet50'
  70. assert backbone in image_pretrain, "There is not ImageNet pretrain weights for {}, you may try COCO.".format(
  71. backbone)
  72. try:
  73. hub.download(backbone, save_path=new_save_dir)
  74. except Exception as e:
  75. if isinstance(e, hub.ResourceNotFoundError):
  76. raise Exception(
  77. "Resource for backbone {} not found".format(backbone))
  78. elif isinstance(e, hub.ServerConnectionError):
  79. raise Exception(
  80. "Cannot get reource for backbone {}, please check your internet connecgtion"
  81. .format(backbone))
  82. else:
  83. raise Exception(
  84. "Unexpected error, please make sure paddlehub >= 1.6.2")
  85. return osp.join(new_save_dir, backbone)
  86. elif flag == 'COCO':
  87. new_save_dir = save_dir
  88. if hasattr(paddlex, 'pretrain_dir'):
  89. new_save_dir = paddlex.pretrain_dir
  90. assert backbone in coco_pretrain, "There is not COCO pretrain weights for {}, you may try ImageNet.".format(
  91. backbone)
  92. try:
  93. hub.download(backbone, save_path=new_save_dir)
  94. except Exception as e:
  95. if isinstance(hub.ResourceNotFoundError):
  96. raise Exception(
  97. "Resource for backbone {} not found".format(backbone))
  98. elif isinstance(hub.ServerConnectionError):
  99. raise Exception(
  100. "Cannot get reource for backbone {}, please check your internet connecgtion"
  101. .format(backbone))
  102. else:
  103. raise Exception(
  104. "Unexpected error, please make sure paddlehub >= 1.6.2")
  105. return osp.join(new_save_dir, backbone)
  106. else:
  107. raise Exception(
  108. "pretrain_weights need to be defined as directory path or `IMAGENET` or 'COCO' (download pretrain weights automatically)."
  109. )