| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, Optional
- import pickle
- from pathlib import Path
- import numpy as np
- from ...utils.pp_option import PaddlePredictorOption
- from ...common.reader import ReadImage
- from ...common.batch_sampler import ImageBatchSampler
- from ..components import CropByBoxes
- from ..base import BasePipeline
- from .result import AttributeRecResult
- class AttributeRecPipeline(BasePipeline):
- """Attribute Rec Pipeline"""
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_params: Optional[Dict[str, Any]] = None,
- ):
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
- )
- self.det_model = self.create_model(config["SubModules"]["Detection"])
- self.cls_model = self.create_model(config["SubModules"]["Classification"])
- self._crop_by_boxes = CropByBoxes()
- self._img_reader = ReadImage(format="BGR")
- self.det_threshold = config["SubModules"]["Detection"].get("threshold", 0.7)
- self.cls_threshold = config["SubModules"]["Classification"].get(
- "threshold", 0.7
- )
- self.batch_sampler = ImageBatchSampler(
- batch_size=config["SubModules"]["Detection"]["batch_size"]
- )
- self.img_reader = ReadImage(format="BGR")
- def predict(self, input, **kwargs):
- det_threshold = kwargs.pop("det_threshold", self.det_threshold)
- cls_threshold = kwargs.pop("cls_threshold", self.cls_threshold)
- for img_id, batch_data in enumerate(self.batch_sampler(input)):
- raw_imgs = self.img_reader(batch_data)
- all_det_res = list(self.det_model(raw_imgs, threshold=det_threshold))
- for input_data, raw_img, det_res in zip(batch_data, raw_imgs, all_det_res):
- cls_res = self.get_cls_result(raw_img, det_res, cls_threshold)
- yield self.get_final_result(input_data, raw_img, det_res, cls_res)
- def get_cls_result(self, raw_img, det_res, cls_threshold):
- subs_of_img = list(self._crop_by_boxes(raw_img, det_res["boxes"]))
- img_list = [img["img"] for img in subs_of_img]
- all_cls_res = list(self.cls_model(img_list, threshold=cls_threshold))
- output = {"label": [], "score": []}
- for res in all_cls_res:
- output["label"].append(res["label_names"])
- output["score"].append(res["scores"])
- return output
- def get_final_result(self, input_data, raw_img, det_res, rec_res):
- single_img_res = {"input_path": input_data, "input_img": raw_img, "boxes": []}
- for i, obj in enumerate(det_res["boxes"]):
- rec_scores = rec_res["score"][i]
- labels = rec_res["label"][i]
- single_img_res["boxes"].append(
- {
- "labels": labels,
- "rec_scores": rec_scores,
- "det_score": obj["score"],
- "coordinate": obj["coordinate"],
- }
- )
- return AttributeRecResult(single_img_res)
- class PedestrianAttributeRecPipeline(AttributeRecPipeline):
- entities = "pedestrian_attribute_recognition"
- class VehicleAttributeRecPipeline(AttributeRecPipeline):
- entities = "vehicle_attribute_recognition"
|