| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, Optional
- from scipy.ndimage import rotate
- import numpy as np
- from ..base import BasePipeline
- from .result import DocPreprocessorResult
- from ....utils import logging
- from ...common.reader import ReadImage
- from ...common.batch_sampler import ImageBatchSampler
- from ...utils.pp_option import PaddlePredictorOption
- class DocPreprocessorPipeline(BasePipeline):
- """Doc Preprocessor Pipeline"""
- entities = "doc_preprocessor"
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_params: Optional[Dict[str, Any]] = None,
- ) -> None:
- """Initializes the doc preprocessor pipeline.
- Args:
- config (Dict): Configuration dictionary containing various settings.
- device (str, optional): Device to run the predictions on. Defaults to None.
- pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
- use_hpip (bool, optional): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
- hpi_params (Optional[Dict[str, Any]], optional): HPIP parameters. Defaults to None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
- )
- self.use_doc_orientation_classify = True
- if "use_doc_orientation_classify" in config:
- self.use_doc_orientation_classify = config["use_doc_orientation_classify"]
- self.use_doc_unwarping = True
- if "use_doc_unwarping" in config:
- self.use_doc_unwarping = config["use_doc_unwarping"]
- if self.use_doc_orientation_classify:
- doc_ori_classify_config = config["SubModules"]["DocOrientationClassify"]
- self.doc_ori_classify_model = self.create_model(doc_ori_classify_config)
- if self.use_doc_unwarping:
- doc_unwarping_config = config["SubModules"]["DocUnwarping"]
- self.doc_unwarping_model = self.create_model(doc_unwarping_config)
- self.batch_sampler = ImageBatchSampler(batch_size=1)
- self.img_reader = ReadImage(format="BGR")
- def rotate_image(self, image_array: np.ndarray, rotate_angle: float) -> np.ndarray:
- """
- Rotate the given image array by the specified angle.
- Args:
- image_array (np.ndarray): The input image array to be rotated.
- rotate_angle (float): The angle in degrees by which to rotate the image.
- Returns:
- np.ndarray: The rotated image array.
- Raises:
- AssertionError: If rotate_angle is not in the range [0, 360).
- """
- assert (
- rotate_angle >= 0 and rotate_angle < 360
- ), "rotate_angle must in [0-360), but get {rotate_angle}."
- return rotate(image_array, rotate_angle, reshape=True)
- def check_input_params_valid(self, input_params: Dict) -> bool:
- """
- Check if the input parameters are valid based on the initialized models.
- Args:
- input_params (Dict): A dictionary containing input parameters.
- Returns:
- bool: True if all required models are initialized according to input parameters, False otherwise.
- """
- if (
- input_params["use_doc_orientation_classify"]
- and not self.use_doc_orientation_classify
- ):
- logging.error(
- "Set use_doc_orientation_classify, but the model for doc orientation classify is not initialized."
- )
- return False
- if input_params["use_doc_unwarping"] and not self.use_doc_unwarping:
- logging.error(
- "Set use_doc_unwarping, but the model for doc unwarping is not initialized."
- )
- return False
- return True
- def predict(
- self,
- input: str | list[str] | np.ndarray | list[np.ndarray],
- use_doc_orientation_classify: bool = True,
- use_doc_unwarping: bool = False,
- **kwargs
- ) -> DocPreprocessorResult:
- """
- Predict the preprocessing result for the input image or images.
- Args:
- input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images or pdfs.
- use_doc_orientation_classify (bool): Whether to use document orientation classification.
- use_doc_unwarping (bool): Whether to use document unwarping.
- **kwargs: Additional keyword arguments.
- Returns:
- DocPreprocessorResult: A generator yielding preprocessing results.
- """
- input_params = {
- "use_doc_orientation_classify": use_doc_orientation_classify,
- "use_doc_unwarping": use_doc_unwarping,
- }
- if not self.check_input_params_valid(input_params):
- yield {"error": "input params invalid"}
- for img_id, batch_data in enumerate(self.batch_sampler(input)):
- image_array = self.img_reader(batch_data)[0]
- if input_params["use_doc_orientation_classify"]:
- pred = next(self.doc_ori_classify_model(image_array))
- angle = int(pred["label_names"][0])
- rot_img = self.rotate_image(image_array, angle)
- else:
- angle = -1
- rot_img = image_array
- if input_params["use_doc_unwarping"]:
- output_img = next(self.doc_unwarping_model(rot_img))["doctr_img"]
- else:
- output_img = rot_img
- img_id += 1
- single_img_res = {
- "input_image": image_array,
- "input_params": input_params,
- "angle": angle,
- "rot_img": rot_img,
- "output_img": output_img,
- "img_id": img_id,
- }
- yield DocPreprocessorResult(single_img_res)
|