| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os.path as osp
- import copy
- import numpy as np
- from paddle.io import Dataset
- from paddlex.utils import logging, get_num_workers, get_encoding, path_normalization, is_pic
- class ImageNet(Dataset):
- """读取ImageNet格式的分类数据集,并对样本进行相应的处理。
- Args:
- data_dir (str): 数据集所在的目录路径。
- file_list (str): 描述数据集图片文件和类别id的文件路径(文本内每行路径为相对data_dir的相对路)。
- label_list (str): 描述数据集包含的类别信息文件路径。
- transforms (paddlex.transforms): 数据集中每个样本的预处理/增强算子。
- num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
- 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核
- 数的一半。
- shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
- """
- def __init__(self,
- data_dir,
- file_list,
- label_list,
- transforms=None,
- num_workers='auto',
- shuffle=False):
- super(ImageNet, self).__init__()
- self.transforms = copy.deepcopy(transforms)
- # TODO batch padding
- self.batch_transforms = None
- self.num_workers = get_num_workers(num_workers)
- self.shuffle = shuffle
- self.file_list = list()
- self.labels = list()
- with open(label_list, encoding=get_encoding(label_list)) as f:
- for line in f:
- item = line.strip()
- self.labels.append(item)
- logging.info("Starting to read file list from dataset...")
- with open(file_list, encoding=get_encoding(file_list)) as f:
- for line in f:
- items = line.strip().split()
- if len(items) > 2:
- raise Exception(
- "A space is defined as the delimiter to separate the image and label path, " \
- "so the space cannot be in the image or label path, but the line[{}] of " \
- " file_list[{}] has a space in the image or label path.".format(line, file_list))
- items[0] = path_normalization(items[0])
- if not is_pic(items[0]):
- continue
- full_path = osp.join(data_dir, items[0])
- if not osp.exists(full_path):
- raise IOError('The image file {} does not exist!'.format(
- full_path))
- self.file_list.append({
- 'image': full_path,
- 'label': np.asarray(
- items[1], dtype=np.int64)
- })
- self.num_samples = len(self.file_list)
- logging.info("{} samples in file {}".format(
- len(self.file_list), file_list))
- def __getitem__(self, idx):
- sample = copy.deepcopy(self.file_list[idx])
- outputs = self.transforms(sample)
- return outputs
- def __len__(self):
- return len(self.file_list)
|