| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddlex.paddleseg.models import layers
- from paddlex.paddleseg.cvlibs import manager
- from paddlex.paddleseg.utils import utils
- @manager.MODELS.add_component
- class EMANet(nn.Layer):
- """
- Expectation Maximization Attention Networks for Semantic Segmentation based on PaddlePaddle.
- The original article refers to
- Xia Li, et al. "Expectation-Maximization Attention Networks for Semantic Segmentation"
- (https://arxiv.org/abs/1907.13426)
- Args:
- num_classes (int): The unique number of target classes.
- backbone (Paddle.nn.Layer): A backbone network.
- backbone_indices (tuple): The values in the tuple indicate the indices of output of backbone.
- ema_channels (int): EMA module channels.
- gc_channels (int): The input channels to Global Context Block.
- num_bases (int): Number of bases.
- stage_num (int): The iteration number for EM.
- momentum (float): The parameter for updating bases.
- concat_input (bool): Whether concat the input and output of convs before classification layer. Default: True
- enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
- align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
- is even, e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
- pretrained (str, optional): The path or url of pretrained model. Default: None.
- """
- def __init__(self,
- num_classes,
- backbone,
- backbone_indices=(2, 3),
- ema_channels=512,
- gc_channels=256,
- num_bases=64,
- stage_num=3,
- momentum=0.1,
- concat_input=True,
- enable_auxiliary_loss=True,
- align_corners=False,
- pretrained=None):
- super().__init__()
- self.backbone = backbone
- self.backbone_indices = backbone_indices
- in_channels = [self.backbone.feat_channels[i] for i in backbone_indices]
- self.head = EMAHead(num_classes, in_channels, ema_channels, gc_channels,
- num_bases, stage_num, momentum, concat_input,
- enable_auxiliary_loss)
- self.align_corners = align_corners
- self.pretrained = pretrained
- self.init_weight()
- def forward(self, x):
- feats = self.backbone(x)
- feats = [feats[i] for i in self.backbone_indices]
- logit_list = self.head(feats)
- logit_list = [
- F.interpolate(
- logit,
- paddle.shape(x)[2:],
- mode='bilinear',
- align_corners=self.align_corners) for logit in logit_list
- ]
- return logit_list
- def init_weight(self):
- if self.pretrained is not None:
- utils.load_entire_model(self, self.pretrained)
- class EMAHead(nn.Layer):
- """
- The EMANet head.
- Args:
- num_classes (int): The unique number of target classes.
- in_channels (tuple): The number of input channels.
- ema_channels (int): EMA module channels.
- gc_channels (int): The input channels to Global Context Block.
- num_bases (int): Number of bases.
- stage_num (int): The iteration number for EM.
- momentum (float): The parameter for updating bases.
- concat_input (bool): Whether concat the input and output of convs before classification layer. Default: True
- enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
- """
- def __init__(self,
- num_classes,
- in_channels,
- ema_channels,
- gc_channels,
- num_bases,
- stage_num,
- momentum,
- concat_input=True,
- enable_auxiliary_loss=True):
- super(EMAHead, self).__init__()
- self.in_channels = in_channels[-1]
- self.concat_input = concat_input
- self.enable_auxiliary_loss = enable_auxiliary_loss
- self.emau = EMAU(ema_channels, num_bases, stage_num, momentum=momentum)
- self.ema_in_conv = layers.ConvBNReLU(
- in_channels=self.in_channels,
- out_channels=ema_channels,
- kernel_size=3)
- self.ema_mid_conv = nn.Conv2D(ema_channels, ema_channels, kernel_size=1)
- self.ema_out_conv = layers.ConvBNReLU(
- in_channels=ema_channels, out_channels=ema_channels, kernel_size=1)
- self.bottleneck = layers.ConvBNReLU(
- in_channels=ema_channels, out_channels=gc_channels, kernel_size=3)
- self.cls = nn.Sequential(
- nn.Dropout2D(p=0.1), nn.Conv2D(gc_channels, num_classes, 1))
- self.aux = nn.Sequential(
- layers.ConvBNReLU(
- in_channels=1024, out_channels=256, kernel_size=3),
- nn.Dropout2D(p=0.1), nn.Conv2D(256, num_classes, 1))
- if self.concat_input:
- self.conv_cat = layers.ConvBNReLU(
- self.in_channels + gc_channels, gc_channels, kernel_size=3)
- def forward(self, feat_list):
- C3, C4 = feat_list
- feats = self.ema_in_conv(C4)
- identity = feats
- feats = self.ema_mid_conv(feats)
- recon = self.emau(feats)
- recon = F.relu(recon)
- recon = self.ema_out_conv(recon)
- output = F.relu(identity + recon)
- output = self.bottleneck(output)
- if self.concat_input:
- output = self.conv_cat(paddle.concat([C4, output], axis=1))
- output = self.cls(output)
- if self.enable_auxiliary_loss:
- auxout = self.aux(C3)
- return [output, auxout]
- else:
- return [output]
- class EMAU(nn.Layer):
- '''The Expectation-Maximization Attention Unit (EMAU).
- Arguments:
- c (int): The input and output channel number.
- k (int): The number of the bases.
- stage_num (int): The iteration number for EM.
- momentum (float): The parameter for updating bases.
- '''
- def __init__(self, c, k, stage_num=3, momentum=0.1):
- super(EMAU, self).__init__()
- assert stage_num >= 1
- self.stage_num = stage_num
- self.momentum = momentum
- self.c = c
- tmp_mu = self.create_parameter(
- shape=[1, c, k],
- default_initializer=paddle.nn.initializer.KaimingNormal(k))
- mu = F.normalize(paddle.to_tensor(tmp_mu), axis=1, p=2)
- self.register_buffer('mu', mu)
- def forward(self, x):
- x_shape = paddle.shape(x)
- x = x.flatten(2)
- mu = paddle.tile(self.mu, [x_shape[0], 1, 1])
- with paddle.no_grad():
- for i in range(self.stage_num):
- x_t = paddle.transpose(x, [0, 2, 1])
- z = paddle.bmm(x_t, mu)
- z = F.softmax(z, axis=2)
- z_ = F.normalize(z, axis=1, p=1)
- mu = paddle.bmm(x, z_)
- mu = F.normalize(mu, axis=1, p=2)
- z_t = paddle.transpose(z, [0, 2, 1])
- x = paddle.matmul(mu, z_t)
- x = paddle.reshape(x, [0, self.c, x_shape[2], x_shape[3]])
- if self.training:
- mu = paddle.mean(mu, 0, keepdim=True)
- mu = F.normalize(mu, axis=1, p=2)
- mu = self.mu * (1 - self.momentum) + mu * self.momentum
- if paddle.distributed.get_world_size() > 1:
- mu = paddle.distributed.all_reduce(mu)
- mu /= paddle.distributed.get_world_size()
- self.mu = mu
- return x
|