| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddlex.paddleseg.cvlibs import manager
- from paddlex.paddleseg.models import layers
- from paddlex.paddleseg.utils import utils
- __all__ = ['U2Net', 'U2Netp']
- @manager.MODELS.add_component
- class U2Net(nn.Layer):
- """
- The U^2-Net implementation based on PaddlePaddle.
- The original article refers to
- Xuebin Qin, et, al. "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection"
- (https://arxiv.org/abs/2005.09007).
- Args:
- num_classes (int): The unique number of target classes.
- in_ch (int, optional): Input channels. Default: 3.
- pretrained (str, optional): The path or url of pretrained model for fine tuning. Default: None.
- """
- def __init__(self, num_classes, in_ch=3, pretrained=None):
- super(U2Net, self).__init__()
- self.stage1 = RSU7(in_ch, 32, 64)
- self.pool12 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.stage2 = RSU6(64, 32, 128)
- self.pool23 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.stage3 = RSU5(128, 64, 256)
- self.pool34 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.stage4 = RSU4(256, 128, 512)
- self.pool45 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.stage5 = RSU4F(512, 256, 512)
- self.pool56 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.stage6 = RSU4F(512, 256, 512)
- # decoder
- self.stage5d = RSU4F(1024, 256, 512)
- self.stage4d = RSU4(1024, 128, 256)
- self.stage3d = RSU5(512, 64, 128)
- self.stage2d = RSU6(256, 32, 64)
- self.stage1d = RSU7(128, 16, 64)
- self.side1 = nn.Conv2D(64, num_classes, 3, padding=1)
- self.side2 = nn.Conv2D(64, num_classes, 3, padding=1)
- self.side3 = nn.Conv2D(128, num_classes, 3, padding=1)
- self.side4 = nn.Conv2D(256, num_classes, 3, padding=1)
- self.side5 = nn.Conv2D(512, num_classes, 3, padding=1)
- self.side6 = nn.Conv2D(512, num_classes, 3, padding=1)
- self.outconv = nn.Conv2D(6 * num_classes, num_classes, 1)
- self.pretrained = pretrained
- self.init_weight()
- def forward(self, x):
- hx = x
- #stage 1
- hx1 = self.stage1(hx)
- hx = self.pool12(hx1)
- #stage 2
- hx2 = self.stage2(hx)
- hx = self.pool23(hx2)
- #stage 3
- hx3 = self.stage3(hx)
- hx = self.pool34(hx3)
- #stage 4
- hx4 = self.stage4(hx)
- hx = self.pool45(hx4)
- #stage 5
- hx5 = self.stage5(hx)
- hx = self.pool56(hx5)
- #stage 6
- hx6 = self.stage6(hx)
- hx6up = _upsample_like(hx6, hx5)
- #-------------------- decoder --------------------
- hx5d = self.stage5d(paddle.concat((hx6up, hx5), 1))
- hx5dup = _upsample_like(hx5d, hx4)
- hx4d = self.stage4d(paddle.concat((hx5dup, hx4), 1))
- hx4dup = _upsample_like(hx4d, hx3)
- hx3d = self.stage3d(paddle.concat((hx4dup, hx3), 1))
- hx3dup = _upsample_like(hx3d, hx2)
- hx2d = self.stage2d(paddle.concat((hx3dup, hx2), 1))
- hx2dup = _upsample_like(hx2d, hx1)
- hx1d = self.stage1d(paddle.concat((hx2dup, hx1), 1))
- #side output
- d1 = self.side1(hx1d)
- d2 = self.side2(hx2d)
- d2 = _upsample_like(d2, d1)
- d3 = self.side3(hx3d)
- d3 = _upsample_like(d3, d1)
- d4 = self.side4(hx4d)
- d4 = _upsample_like(d4, d1)
- d5 = self.side5(hx5d)
- d5 = _upsample_like(d5, d1)
- d6 = self.side6(hx6)
- d6 = _upsample_like(d6, d1)
- d0 = self.outconv(paddle.concat((d1, d2, d3, d4, d5, d6), 1))
- return [d0, d1, d2, d3, d4, d5, d6]
- def init_weight(self):
- if self.pretrained is not None:
- utils.load_entire_model(self, self.pretrained)
- ### U^2-Net small ###
- @manager.MODELS.add_component
- class U2Netp(nn.Layer):
- """Please Refer to U2Net above."""
- def __init__(self, num_classes, in_ch=3, pretrained=None):
- super(U2Netp, self).__init__()
- self.stage1 = RSU7(in_ch, 16, 64)
- self.pool12 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.stage2 = RSU6(64, 16, 64)
- self.pool23 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.stage3 = RSU5(64, 16, 64)
- self.pool34 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.stage4 = RSU4(64, 16, 64)
- self.pool45 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.stage5 = RSU4F(64, 16, 64)
- self.pool56 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.stage6 = RSU4F(64, 16, 64)
- # decoder
- self.stage5d = RSU4F(128, 16, 64)
- self.stage4d = RSU4(128, 16, 64)
- self.stage3d = RSU5(128, 16, 64)
- self.stage2d = RSU6(128, 16, 64)
- self.stage1d = RSU7(128, 16, 64)
- self.side1 = nn.Conv2D(64, num_classes, 3, padding=1)
- self.side2 = nn.Conv2D(64, num_classes, 3, padding=1)
- self.side3 = nn.Conv2D(64, num_classes, 3, padding=1)
- self.side4 = nn.Conv2D(64, num_classes, 3, padding=1)
- self.side5 = nn.Conv2D(64, num_classes, 3, padding=1)
- self.side6 = nn.Conv2D(64, num_classes, 3, padding=1)
- self.outconv = nn.Conv2D(6 * num_classes, num_classes, 1)
- self.pretrained = pretrained
- self.init_weight()
- def forward(self, x):
- hx = x
- #stage 1
- hx1 = self.stage1(hx)
- hx = self.pool12(hx1)
- #stage 2
- hx2 = self.stage2(hx)
- hx = self.pool23(hx2)
- #stage 3
- hx3 = self.stage3(hx)
- hx = self.pool34(hx3)
- #stage 4
- hx4 = self.stage4(hx)
- hx = self.pool45(hx4)
- #stage 5
- hx5 = self.stage5(hx)
- hx = self.pool56(hx5)
- #stage 6
- hx6 = self.stage6(hx)
- hx6up = _upsample_like(hx6, hx5)
- #decoder
- hx5d = self.stage5d(paddle.concat((hx6up, hx5), 1))
- hx5dup = _upsample_like(hx5d, hx4)
- hx4d = self.stage4d(paddle.concat((hx5dup, hx4), 1))
- hx4dup = _upsample_like(hx4d, hx3)
- hx3d = self.stage3d(paddle.concat((hx4dup, hx3), 1))
- hx3dup = _upsample_like(hx3d, hx2)
- hx2d = self.stage2d(paddle.concat((hx3dup, hx2), 1))
- hx2dup = _upsample_like(hx2d, hx1)
- hx1d = self.stage1d(paddle.concat((hx2dup, hx1), 1))
- #side output
- d1 = self.side1(hx1d)
- d2 = self.side2(hx2d)
- d2 = _upsample_like(d2, d1)
- d3 = self.side3(hx3d)
- d3 = _upsample_like(d3, d1)
- d4 = self.side4(hx4d)
- d4 = _upsample_like(d4, d1)
- d5 = self.side5(hx5d)
- d5 = _upsample_like(d5, d1)
- d6 = self.side6(hx6)
- d6 = _upsample_like(d6, d1)
- d0 = self.outconv(paddle.concat((d1, d2, d3, d4, d5, d6), 1))
- return [d0, d1, d2, d3, d4, d5, d6]
- def init_weight(self):
- if self.pretrained is not None:
- utils.load_entire_model(self, self.pretrained)
- class REBNCONV(nn.Layer):
- def __init__(self, in_ch=3, out_ch=3, dirate=1):
- super(REBNCONV, self).__init__()
- self.conv_s1 = nn.Conv2D(
- in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate)
- self.bn_s1 = nn.BatchNorm2D(out_ch)
- self.relu_s1 = nn.ReLU()
- def forward(self, x):
- hx = x
- xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
- return xout
- ## upsample tensor 'src' to have the same spatial size with tensor 'tar'
- def _upsample_like(src, tar):
- src = F.upsample(src, size=paddle.shape(tar)[2:], mode='bilinear')
- return src
- ### RSU-7 ###
- class RSU7(nn.Layer): #UNet07DRES(nn.Layer):
- def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
- super(RSU7, self).__init__()
- self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
- self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
- self.pool1 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.pool2 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.pool3 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.pool4 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.pool5 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
- self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
- def forward(self, x):
- hx = x
- hxin = self.rebnconvin(hx)
- hx1 = self.rebnconv1(hxin)
- hx = self.pool1(hx1)
- hx2 = self.rebnconv2(hx)
- hx = self.pool2(hx2)
- hx3 = self.rebnconv3(hx)
- hx = self.pool3(hx3)
- hx4 = self.rebnconv4(hx)
- hx = self.pool4(hx4)
- hx5 = self.rebnconv5(hx)
- hx = self.pool5(hx5)
- hx6 = self.rebnconv6(hx)
- hx7 = self.rebnconv7(hx6)
- hx6d = self.rebnconv6d(paddle.concat((hx7, hx6), 1))
- hx6dup = _upsample_like(hx6d, hx5)
- hx5d = self.rebnconv5d(paddle.concat((hx6dup, hx5), 1))
- hx5dup = _upsample_like(hx5d, hx4)
- hx4d = self.rebnconv4d(paddle.concat((hx5dup, hx4), 1))
- hx4dup = _upsample_like(hx4d, hx3)
- hx3d = self.rebnconv3d(paddle.concat((hx4dup, hx3), 1))
- hx3dup = _upsample_like(hx3d, hx2)
- hx2d = self.rebnconv2d(paddle.concat((hx3dup, hx2), 1))
- hx2dup = _upsample_like(hx2d, hx1)
- hx1d = self.rebnconv1d(paddle.concat((hx2dup, hx1), 1))
- return hx1d + hxin
- ### RSU-6 ###
- class RSU6(nn.Layer): #UNet06DRES(nn.Layer):
- def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
- super(RSU6, self).__init__()
- self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
- self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
- self.pool1 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.pool2 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.pool3 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.pool4 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
- self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
- def forward(self, x):
- hx = x
- hxin = self.rebnconvin(hx)
- hx1 = self.rebnconv1(hxin)
- hx = self.pool1(hx1)
- hx2 = self.rebnconv2(hx)
- hx = self.pool2(hx2)
- hx3 = self.rebnconv3(hx)
- hx = self.pool3(hx3)
- hx4 = self.rebnconv4(hx)
- hx = self.pool4(hx4)
- hx5 = self.rebnconv5(hx)
- hx6 = self.rebnconv6(hx5)
- hx5d = self.rebnconv5d(paddle.concat((hx6, hx5), 1))
- hx5dup = _upsample_like(hx5d, hx4)
- hx4d = self.rebnconv4d(paddle.concat((hx5dup, hx4), 1))
- hx4dup = _upsample_like(hx4d, hx3)
- hx3d = self.rebnconv3d(paddle.concat((hx4dup, hx3), 1))
- hx3dup = _upsample_like(hx3d, hx2)
- hx2d = self.rebnconv2d(paddle.concat((hx3dup, hx2), 1))
- hx2dup = _upsample_like(hx2d, hx1)
- hx1d = self.rebnconv1d(paddle.concat((hx2dup, hx1), 1))
- return hx1d + hxin
- ### RSU-5 ###
- class RSU5(nn.Layer): #UNet05DRES(nn.Layer):
- def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
- super(RSU5, self).__init__()
- self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
- self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
- self.pool1 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.pool2 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.pool3 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
- self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
- def forward(self, x):
- hx = x
- hxin = self.rebnconvin(hx)
- hx1 = self.rebnconv1(hxin)
- hx = self.pool1(hx1)
- hx2 = self.rebnconv2(hx)
- hx = self.pool2(hx2)
- hx3 = self.rebnconv3(hx)
- hx = self.pool3(hx3)
- hx4 = self.rebnconv4(hx)
- hx5 = self.rebnconv5(hx4)
- hx4d = self.rebnconv4d(paddle.concat((hx5, hx4), 1))
- hx4dup = _upsample_like(hx4d, hx3)
- hx3d = self.rebnconv3d(paddle.concat((hx4dup, hx3), 1))
- hx3dup = _upsample_like(hx3d, hx2)
- hx2d = self.rebnconv2d(paddle.concat((hx3dup, hx2), 1))
- hx2dup = _upsample_like(hx2d, hx1)
- hx1d = self.rebnconv1d(paddle.concat((hx2dup, hx1), 1))
- return hx1d + hxin
- ### RSU-4 ###
- class RSU4(nn.Layer): #UNet04DRES(nn.Layer):
- def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
- super(RSU4, self).__init__()
- self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
- self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
- self.pool1 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.pool2 = nn.MaxPool2D(2, stride=2, ceil_mode=True)
- self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
- self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
- self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
- self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
- def forward(self, x):
- hx = x
- hxin = self.rebnconvin(hx)
- hx1 = self.rebnconv1(hxin)
- hx = self.pool1(hx1)
- hx2 = self.rebnconv2(hx)
- hx = self.pool2(hx2)
- hx3 = self.rebnconv3(hx)
- hx4 = self.rebnconv4(hx3)
- hx3d = self.rebnconv3d(paddle.concat((hx4, hx3), 1))
- hx3dup = _upsample_like(hx3d, hx2)
- hx2d = self.rebnconv2d(paddle.concat((hx3dup, hx2), 1))
- hx2dup = _upsample_like(hx2d, hx1)
- hx1d = self.rebnconv1d(paddle.concat((hx2dup, hx1), 1))
- return hx1d + hxin
- ### RSU-4F ###
- class RSU4F(nn.Layer): #UNet04FRES(nn.Layer):
- def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
- super(RSU4F, self).__init__()
- self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
- self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
- self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
- self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
- self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
- self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4)
- self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2)
- self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
- def forward(self, x):
- hx = x
- hxin = self.rebnconvin(hx)
- hx1 = self.rebnconv1(hxin)
- hx2 = self.rebnconv2(hx1)
- hx3 = self.rebnconv3(hx2)
- hx4 = self.rebnconv4(hx3)
- hx3d = self.rebnconv3d(paddle.concat((hx4, hx3), 1))
- hx2d = self.rebnconv2d(paddle.concat((hx3d, hx2), 1))
- hx1d = self.rebnconv1d(paddle.concat((hx2d, hx1), 1))
- return hx1d + hxin
|