| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn import Conv2D, BatchNorm, AdaptiveAvgPool2D, Linear
- from paddle.regularizer import L2Decay
- from paddle.nn.initializer import Uniform, KaimingNormal
- __all__ = ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3"]
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- groups=1,
- act="relu",
- name=None):
- super(ConvBNLayer, self).__init__()
- self._conv = Conv2D(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=(kernel_size - 1) // 2,
- groups=groups,
- weight_attr=ParamAttr(
- initializer=KaimingNormal(), name=name + "_weights"),
- bias_attr=False)
- bn_name = name + "_bn"
- self._batch_norm = BatchNorm(
- num_channels=out_channels,
- act=act,
- param_attr=ParamAttr(
- name=bn_name + "_scale", regularizer=L2Decay(0.0)),
- bias_attr=ParamAttr(
- name=bn_name + "_offset", regularizer=L2Decay(0.0)),
- moving_mean_name=bn_name + "_mean",
- moving_variance_name=bn_name + "_variance")
- def forward(self, inputs):
- y = self._conv(inputs)
- y = self._batch_norm(y)
- return y
- class SEBlock(nn.Layer):
- def __init__(self, num_channels, reduction_ratio=4, name=None):
- super(SEBlock, self).__init__()
- self.pool2d_gap = AdaptiveAvgPool2D(1)
- self._num_channels = num_channels
- stdv = 1.0 / math.sqrt(num_channels * 1.0)
- med_ch = num_channels // reduction_ratio
- self.squeeze = Linear(
- num_channels,
- med_ch,
- weight_attr=ParamAttr(
- initializer=Uniform(-stdv, stdv), name=name + "_1_weights"),
- bias_attr=ParamAttr(name=name + "_1_offset"))
- stdv = 1.0 / math.sqrt(med_ch * 1.0)
- self.excitation = Linear(
- med_ch,
- num_channels,
- weight_attr=ParamAttr(
- initializer=Uniform(-stdv, stdv), name=name + "_2_weights"),
- bias_attr=ParamAttr(name=name + "_2_offset"))
- def forward(self, inputs):
- pool = self.pool2d_gap(inputs)
- pool = paddle.squeeze(pool, axis=[2, 3])
- squeeze = self.squeeze(pool)
- squeeze = F.relu(squeeze)
- excitation = self.excitation(squeeze)
- excitation = paddle.clip(x=excitation, min=0, max=1)
- excitation = paddle.unsqueeze(excitation, axis=[2, 3])
- out = paddle.multiply(inputs, excitation)
- return out
- class GhostModule(nn.Layer):
- def __init__(self,
- in_channels,
- output_channels,
- kernel_size=1,
- ratio=2,
- dw_size=3,
- stride=1,
- relu=True,
- name=None):
- super(GhostModule, self).__init__()
- init_channels = int(math.ceil(output_channels / ratio))
- new_channels = int(init_channels * (ratio - 1))
- self.primary_conv = ConvBNLayer(
- in_channels=in_channels,
- out_channels=init_channels,
- kernel_size=kernel_size,
- stride=stride,
- groups=1,
- act="relu" if relu else None,
- name=name + "_primary_conv")
- self.cheap_operation = ConvBNLayer(
- in_channels=init_channels,
- out_channels=new_channels,
- kernel_size=dw_size,
- stride=1,
- groups=init_channels,
- act="relu" if relu else None,
- name=name + "_cheap_operation")
- def forward(self, inputs):
- x = self.primary_conv(inputs)
- y = self.cheap_operation(x)
- out = paddle.concat([x, y], axis=1)
- return out
- class GhostBottleneck(nn.Layer):
- def __init__(self,
- in_channels,
- hidden_dim,
- output_channels,
- kernel_size,
- stride,
- use_se,
- name=None):
- super(GhostBottleneck, self).__init__()
- self._stride = stride
- self._use_se = use_se
- self._num_channels = in_channels
- self._output_channels = output_channels
- self.ghost_module_1 = GhostModule(
- in_channels=in_channels,
- output_channels=hidden_dim,
- kernel_size=1,
- stride=1,
- relu=True,
- name=name + "_ghost_module_1")
- if stride == 2:
- self.depthwise_conv = ConvBNLayer(
- in_channels=hidden_dim,
- out_channels=hidden_dim,
- kernel_size=kernel_size,
- stride=stride,
- groups=hidden_dim,
- act=None,
- name=name +
- "_depthwise_depthwise" # looks strange due to an old typo, will be fixed later.
- )
- if use_se:
- self.se_block = SEBlock(num_channels=hidden_dim, name=name + "_se")
- self.ghost_module_2 = GhostModule(
- in_channels=hidden_dim,
- output_channels=output_channels,
- kernel_size=1,
- relu=False,
- name=name + "_ghost_module_2")
- if stride != 1 or in_channels != output_channels:
- self.shortcut_depthwise = ConvBNLayer(
- in_channels=in_channels,
- out_channels=in_channels,
- kernel_size=kernel_size,
- stride=stride,
- groups=in_channels,
- act=None,
- name=name +
- "_shortcut_depthwise_depthwise" # looks strange due to an old typo, will be fixed later.
- )
- self.shortcut_conv = ConvBNLayer(
- in_channels=in_channels,
- out_channels=output_channels,
- kernel_size=1,
- stride=1,
- groups=1,
- act=None,
- name=name + "_shortcut_conv")
- def forward(self, inputs):
- x = self.ghost_module_1(inputs)
- if self._stride == 2:
- x = self.depthwise_conv(x)
- if self._use_se:
- x = self.se_block(x)
- x = self.ghost_module_2(x)
- if self._stride == 1 and self._num_channels == self._output_channels:
- shortcut = inputs
- else:
- shortcut = self.shortcut_depthwise(inputs)
- shortcut = self.shortcut_conv(shortcut)
- return paddle.add(x=x, y=shortcut)
- class GhostNet(nn.Layer):
- def __init__(self, scale, class_dim=1000):
- super(GhostNet, self).__init__()
- self.cfgs = [
- # k, t, c, SE, s
- [3, 16, 16, 0, 1],
- [3, 48, 24, 0, 2],
- [3, 72, 24, 0, 1],
- [5, 72, 40, 1, 2],
- [5, 120, 40, 1, 1],
- [3, 240, 80, 0, 2],
- [3, 200, 80, 0, 1],
- [3, 184, 80, 0, 1],
- [3, 184, 80, 0, 1],
- [3, 480, 112, 1, 1],
- [3, 672, 112, 1, 1],
- [5, 672, 160, 1, 2],
- [5, 960, 160, 0, 1],
- [5, 960, 160, 1, 1],
- [5, 960, 160, 0, 1],
- [5, 960, 160, 1, 1]
- ]
- self.scale = scale
- output_channels = int(self._make_divisible(16 * self.scale, 4))
- self.conv1 = ConvBNLayer(
- in_channels=3,
- out_channels=output_channels,
- kernel_size=3,
- stride=2,
- groups=1,
- act="relu",
- name="conv1")
- # build inverted residual blocks
- idx = 0
- self.ghost_bottleneck_list = []
- for k, exp_size, c, use_se, s in self.cfgs:
- in_channels = output_channels
- output_channels = int(self._make_divisible(c * self.scale, 4))
- hidden_dim = int(self._make_divisible(exp_size * self.scale, 4))
- ghost_bottleneck = self.add_sublayer(
- name="_ghostbottleneck_" + str(idx),
- sublayer=GhostBottleneck(
- in_channels=in_channels,
- hidden_dim=hidden_dim,
- output_channels=output_channels,
- kernel_size=k,
- stride=s,
- use_se=use_se,
- name="_ghostbottleneck_" + str(idx)))
- self.ghost_bottleneck_list.append(ghost_bottleneck)
- idx += 1
- # build last several layers
- in_channels = output_channels
- output_channels = int(self._make_divisible(exp_size * self.scale, 4))
- self.conv_last = ConvBNLayer(
- in_channels=in_channels,
- out_channels=output_channels,
- kernel_size=1,
- stride=1,
- groups=1,
- act="relu",
- name="conv_last")
- self.pool2d_gap = AdaptiveAvgPool2D(1)
- in_channels = output_channels
- self._fc0_output_channels = 1280
- self.fc_0 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=self._fc0_output_channels,
- kernel_size=1,
- stride=1,
- act="relu",
- name="fc_0")
- self.dropout = nn.Dropout(p=0.2)
- stdv = 1.0 / math.sqrt(self._fc0_output_channels * 1.0)
- self.fc_1 = Linear(
- self._fc0_output_channels,
- class_dim,
- weight_attr=ParamAttr(
- name="fc_1_weights", initializer=Uniform(-stdv, stdv)),
- bias_attr=ParamAttr(name="fc_1_offset"))
- def forward(self, inputs):
- x = self.conv1(inputs)
- for ghost_bottleneck in self.ghost_bottleneck_list:
- x = ghost_bottleneck(x)
- x = self.conv_last(x)
- x = self.pool2d_gap(x)
- x = self.fc_0(x)
- x = self.dropout(x)
- x = paddle.reshape(x, shape=[-1, self._fc0_output_channels])
- x = self.fc_1(x)
- return x
- def _make_divisible(self, v, divisor, min_value=None):
- """
- This function is taken from the original tf repo.
- It ensures that all layers have a channel number that is divisible by 8
- It can be seen here:
- https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
- """
- if min_value is None:
- min_value = divisor
- new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
- # Make sure that round down does not go down by more than 10%.
- if new_v < 0.9 * v:
- new_v += divisor
- return new_v
- def GhostNet_x0_5(**args):
- model = GhostNet(scale=0.5)
- return model
- def GhostNet_x1_0(**args):
- model = GhostNet(scale=1.0)
- return model
- def GhostNet_x1_3(**args):
- model = GhostNet(scale=1.3)
- return model
|