| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 |
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
- from paddle.nn.initializer import Uniform
- import math
- __all__ = ['GoogLeNet']
- def xavier(channels, filter_size, name):
- stdv = (3.0 / (filter_size**2 * channels))**0.5
- param_attr = ParamAttr(
- initializer=Uniform(-stdv, stdv), name=name + "_weights")
- return param_attr
- class ConvLayer(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- filter_size,
- stride=1,
- groups=1,
- act=None,
- name=None):
- super(ConvLayer, self).__init__()
- self._conv = Conv2D(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=filter_size,
- stride=stride,
- padding=(filter_size - 1) // 2,
- groups=groups,
- weight_attr=ParamAttr(name=name + "_weights"),
- bias_attr=False)
- def forward(self, inputs):
- y = self._conv(inputs)
- return y
- class Inception(nn.Layer):
- def __init__(self,
- input_channels,
- output_channels,
- filter1,
- filter3R,
- filter3,
- filter5R,
- filter5,
- proj,
- name=None):
- super(Inception, self).__init__()
- self._conv1 = ConvLayer(
- input_channels, filter1, 1, name="inception_" + name + "_1x1")
- self._conv3r = ConvLayer(
- input_channels,
- filter3R,
- 1,
- name="inception_" + name + "_3x3_reduce")
- self._conv3 = ConvLayer(
- filter3R, filter3, 3, name="inception_" + name + "_3x3")
- self._conv5r = ConvLayer(
- input_channels,
- filter5R,
- 1,
- name="inception_" + name + "_5x5_reduce")
- self._conv5 = ConvLayer(
- filter5R, filter5, 5, name="inception_" + name + "_5x5")
- self._pool = MaxPool2D(kernel_size=3, stride=1, padding=1)
- self._convprj = ConvLayer(
- input_channels, proj, 1, name="inception_" + name + "_3x3_proj")
- def forward(self, inputs):
- conv1 = self._conv1(inputs)
- conv3r = self._conv3r(inputs)
- conv3 = self._conv3(conv3r)
- conv5r = self._conv5r(inputs)
- conv5 = self._conv5(conv5r)
- pool = self._pool(inputs)
- convprj = self._convprj(pool)
- cat = paddle.concat([conv1, conv3, conv5, convprj], axis=1)
- cat = F.relu(cat)
- return cat
- class GoogLeNetDY(nn.Layer):
- def __init__(self, class_dim=1000):
- super(GoogLeNetDY, self).__init__()
- self._conv = ConvLayer(3, 64, 7, 2, name="conv1")
- self._pool = MaxPool2D(kernel_size=3, stride=2)
- self._conv_1 = ConvLayer(64, 64, 1, name="conv2_1x1")
- self._conv_2 = ConvLayer(64, 192, 3, name="conv2_3x3")
- self._ince3a = Inception(
- 192, 192, 64, 96, 128, 16, 32, 32, name="ince3a")
- self._ince3b = Inception(
- 256, 256, 128, 128, 192, 32, 96, 64, name="ince3b")
- self._ince4a = Inception(
- 480, 480, 192, 96, 208, 16, 48, 64, name="ince4a")
- self._ince4b = Inception(
- 512, 512, 160, 112, 224, 24, 64, 64, name="ince4b")
- self._ince4c = Inception(
- 512, 512, 128, 128, 256, 24, 64, 64, name="ince4c")
- self._ince4d = Inception(
- 512, 512, 112, 144, 288, 32, 64, 64, name="ince4d")
- self._ince4e = Inception(
- 528, 528, 256, 160, 320, 32, 128, 128, name="ince4e")
- self._ince5a = Inception(
- 832, 832, 256, 160, 320, 32, 128, 128, name="ince5a")
- self._ince5b = Inception(
- 832, 832, 384, 192, 384, 48, 128, 128, name="ince5b")
- self._pool_5 = AvgPool2D(kernel_size=7, stride=7)
- self._drop = Dropout(p=0.4, mode="downscale_in_infer")
- self._fc_out = Linear(
- 1024,
- class_dim,
- weight_attr=xavier(1024, 1, "out"),
- bias_attr=ParamAttr(name="out_offset"))
- self._pool_o1 = AvgPool2D(kernel_size=5, stride=3)
- self._conv_o1 = ConvLayer(512, 128, 1, name="conv_o1")
- self._fc_o1 = Linear(
- 1152,
- 1024,
- weight_attr=xavier(2048, 1, "fc_o1"),
- bias_attr=ParamAttr(name="fc_o1_offset"))
- self._drop_o1 = Dropout(p=0.7, mode="downscale_in_infer")
- self._out1 = Linear(
- 1024,
- class_dim,
- weight_attr=xavier(1024, 1, "out1"),
- bias_attr=ParamAttr(name="out1_offset"))
- self._pool_o2 = AvgPool2D(kernel_size=5, stride=3)
- self._conv_o2 = ConvLayer(528, 128, 1, name="conv_o2")
- self._fc_o2 = Linear(
- 1152,
- 1024,
- weight_attr=xavier(2048, 1, "fc_o2"),
- bias_attr=ParamAttr(name="fc_o2_offset"))
- self._drop_o2 = Dropout(p=0.7, mode="downscale_in_infer")
- self._out2 = Linear(
- 1024,
- class_dim,
- weight_attr=xavier(1024, 1, "out2"),
- bias_attr=ParamAttr(name="out2_offset"))
- def forward(self, inputs):
- x = self._conv(inputs)
- x = self._pool(x)
- x = self._conv_1(x)
- x = self._conv_2(x)
- x = self._pool(x)
- x = self._ince3a(x)
- x = self._ince3b(x)
- x = self._pool(x)
- ince4a = self._ince4a(x)
- x = self._ince4b(ince4a)
- x = self._ince4c(x)
- ince4d = self._ince4d(x)
- x = self._ince4e(ince4d)
- x = self._pool(x)
- x = self._ince5a(x)
- ince5b = self._ince5b(x)
- x = self._pool_5(ince5b)
- x = self._drop(x)
- x = paddle.squeeze(x, axis=[2, 3])
- out = self._fc_out(x)
- x = self._pool_o1(ince4a)
- x = self._conv_o1(x)
- x = paddle.flatten(x, start_axis=1, stop_axis=-1)
- x = self._fc_o1(x)
- x = F.relu(x)
- x = self._drop_o1(x)
- out1 = self._out1(x)
- x = self._pool_o2(ince4d)
- x = self._conv_o2(x)
- x = paddle.flatten(x, start_axis=1, stop_axis=-1)
- x = self._fc_o2(x)
- x = self._drop_o2(x)
- out2 = self._out2(x)
- return [out, out1, out2]
- def GoogLeNet(**args):
- model = GoogLeNetDY(**args)
- return model
|