res2net.py 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. import numpy as np
  18. import paddle
  19. from paddle import ParamAttr
  20. import paddle.nn as nn
  21. import paddle.nn.functional as F
  22. from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
  23. from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
  24. from paddle.nn.initializer import Uniform
  25. import math
  26. __all__ = [
  27. "Res2Net50_48w_2s", "Res2Net50_26w_4s", "Res2Net50_14w_8s",
  28. "Res2Net50_48w_2s", "Res2Net50_26w_6s", "Res2Net50_26w_8s",
  29. "Res2Net101_26w_4s", "Res2Net152_26w_4s", "Res2Net200_26w_4s"
  30. ]
  31. class ConvBNLayer(nn.Layer):
  32. def __init__(
  33. self,
  34. num_channels,
  35. num_filters,
  36. filter_size,
  37. stride=1,
  38. groups=1,
  39. act=None,
  40. name=None, ):
  41. super(ConvBNLayer, self).__init__()
  42. self._conv = Conv2D(
  43. in_channels=num_channels,
  44. out_channels=num_filters,
  45. kernel_size=filter_size,
  46. stride=stride,
  47. padding=(filter_size - 1) // 2,
  48. groups=groups,
  49. weight_attr=ParamAttr(name=name + "_weights"),
  50. bias_attr=False)
  51. if name == "conv1":
  52. bn_name = "bn_" + name
  53. else:
  54. bn_name = "bn" + name[3:]
  55. self._batch_norm = BatchNorm(
  56. num_filters,
  57. act=act,
  58. param_attr=ParamAttr(name=bn_name + '_scale'),
  59. bias_attr=ParamAttr(bn_name + '_offset'),
  60. moving_mean_name=bn_name + '_mean',
  61. moving_variance_name=bn_name + '_variance')
  62. def forward(self, inputs):
  63. y = self._conv(inputs)
  64. y = self._batch_norm(y)
  65. return y
  66. class BottleneckBlock(nn.Layer):
  67. def __init__(self,
  68. num_channels1,
  69. num_channels2,
  70. num_filters,
  71. stride,
  72. scales,
  73. shortcut=True,
  74. if_first=False,
  75. name=None):
  76. super(BottleneckBlock, self).__init__()
  77. self.stride = stride
  78. self.scales = scales
  79. self.conv0 = ConvBNLayer(
  80. num_channels=num_channels1,
  81. num_filters=num_filters,
  82. filter_size=1,
  83. act='relu',
  84. name=name + "_branch2a")
  85. self.conv1_list = []
  86. for s in range(scales - 1):
  87. conv1 = self.add_sublayer(
  88. name + '_branch2b_' + str(s + 1),
  89. ConvBNLayer(
  90. num_channels=num_filters // scales,
  91. num_filters=num_filters // scales,
  92. filter_size=3,
  93. stride=stride,
  94. act='relu',
  95. name=name + '_branch2b_' + str(s + 1)))
  96. self.conv1_list.append(conv1)
  97. self.pool2d_avg = AvgPool2D(kernel_size=3, stride=stride, padding=1)
  98. self.conv2 = ConvBNLayer(
  99. num_channels=num_filters,
  100. num_filters=num_channels2,
  101. filter_size=1,
  102. act=None,
  103. name=name + "_branch2c")
  104. if not shortcut:
  105. self.short = ConvBNLayer(
  106. num_channels=num_channels1,
  107. num_filters=num_channels2,
  108. filter_size=1,
  109. stride=stride,
  110. name=name + "_branch1")
  111. self.shortcut = shortcut
  112. def forward(self, inputs):
  113. y = self.conv0(inputs)
  114. xs = paddle.split(y, self.scales, 1)
  115. ys = []
  116. for s, conv1 in enumerate(self.conv1_list):
  117. if s == 0 or self.stride == 2:
  118. ys.append(conv1(xs[s]))
  119. else:
  120. ys.append(conv1(paddle.add(xs[s], ys[-1])))
  121. if self.stride == 1:
  122. ys.append(xs[-1])
  123. else:
  124. ys.append(self.pool2d_avg(xs[-1]))
  125. conv1 = paddle.concat(ys, axis=1)
  126. conv2 = self.conv2(conv1)
  127. if self.shortcut:
  128. short = inputs
  129. else:
  130. short = self.short(inputs)
  131. y = paddle.add(x=short, y=conv2)
  132. y = F.relu(y)
  133. return y
  134. class Res2Net(nn.Layer):
  135. def __init__(self, layers=50, scales=4, width=26, class_dim=1000):
  136. super(Res2Net, self).__init__()
  137. self.layers = layers
  138. self.scales = scales
  139. self.width = width
  140. basic_width = self.width * self.scales
  141. supported_layers = [50, 101, 152, 200]
  142. assert layers in supported_layers, \
  143. "supported layers are {} but input layer is {}".format(
  144. supported_layers, layers)
  145. if layers == 50:
  146. depth = [3, 4, 6, 3]
  147. elif layers == 101:
  148. depth = [3, 4, 23, 3]
  149. elif layers == 152:
  150. depth = [3, 8, 36, 3]
  151. elif layers == 200:
  152. depth = [3, 12, 48, 3]
  153. num_channels = [64, 256, 512, 1024]
  154. num_channels2 = [256, 512, 1024, 2048]
  155. num_filters = [basic_width * t for t in [1, 2, 4, 8]]
  156. self.conv1 = ConvBNLayer(
  157. num_channels=3,
  158. num_filters=64,
  159. filter_size=7,
  160. stride=2,
  161. act='relu',
  162. name="conv1")
  163. self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
  164. self.block_list = []
  165. for block in range(len(depth)):
  166. shortcut = False
  167. for i in range(depth[block]):
  168. if layers in [101, 152] and block == 2:
  169. if i == 0:
  170. conv_name = "res" + str(block + 2) + "a"
  171. else:
  172. conv_name = "res" + str(block + 2) + "b" + str(i)
  173. else:
  174. conv_name = "res" + str(block + 2) + chr(97 + i)
  175. bottleneck_block = self.add_sublayer(
  176. 'bb_%d_%d' % (block, i),
  177. BottleneckBlock(
  178. num_channels1=num_channels[block]
  179. if i == 0 else num_channels2[block],
  180. num_channels2=num_channels2[block],
  181. num_filters=num_filters[block],
  182. stride=2 if i == 0 and block != 0 else 1,
  183. scales=scales,
  184. shortcut=shortcut,
  185. if_first=block == i == 0,
  186. name=conv_name))
  187. self.block_list.append(bottleneck_block)
  188. shortcut = True
  189. self.pool2d_avg = AdaptiveAvgPool2D(1)
  190. self.pool2d_avg_channels = num_channels[-1] * 2
  191. stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
  192. self.out = Linear(
  193. self.pool2d_avg_channels,
  194. class_dim,
  195. weight_attr=ParamAttr(
  196. initializer=Uniform(-stdv, stdv), name="fc_weights"),
  197. bias_attr=ParamAttr(name="fc_offset"))
  198. def forward(self, inputs):
  199. y = self.conv1(inputs)
  200. y = self.pool2d_max(y)
  201. for block in self.block_list:
  202. y = block(y)
  203. y = self.pool2d_avg(y)
  204. y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
  205. y = self.out(y)
  206. return y
  207. def Res2Net50_48w_2s(**args):
  208. model = Res2Net(layers=50, scales=2, width=48, **args)
  209. return model
  210. def Res2Net50_26w_4s(**args):
  211. model = Res2Net(layers=50, scales=4, width=26, **args)
  212. return model
  213. def Res2Net50_14w_8s(**args):
  214. model = Res2Net(layers=50, scales=8, width=14, **args)
  215. return model
  216. def Res2Net50_26w_6s(**args):
  217. model = Res2Net(layers=50, scales=6, width=26, **args)
  218. return model
  219. def Res2Net50_26w_8s(**args):
  220. model = Res2Net(layers=50, scales=8, width=26, **args)
  221. return model
  222. def Res2Net101_26w_4s(**args):
  223. model = Res2Net(layers=101, scales=4, width=26, **args)
  224. return model
  225. def Res2Net152_26w_4s(**args):
  226. model = Res2Net(layers=152, scales=4, width=26, **args)
  227. return model
  228. def Res2Net200_26w_4s(**args):
  229. model = Res2Net(layers=200, scales=4, width=26, **args)
  230. return model