res2net_vd.py 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. import numpy as np
  18. import paddle
  19. from paddle import ParamAttr
  20. import paddle.nn as nn
  21. import paddle.nn.functional as F
  22. from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
  23. from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
  24. from paddle.nn.initializer import Uniform
  25. import math
  26. __all__ = [
  27. "Res2Net50_vd_48w_2s", "Res2Net50_vd_26w_4s", "Res2Net50_vd_14w_8s",
  28. "Res2Net50_vd_48w_2s", "Res2Net50_vd_26w_6s", "Res2Net50_vd_26w_8s",
  29. "Res2Net101_vd_26w_4s", "Res2Net152_vd_26w_4s", "Res2Net200_vd_26w_4s"
  30. ]
  31. class ConvBNLayer(nn.Layer):
  32. def __init__(
  33. self,
  34. num_channels,
  35. num_filters,
  36. filter_size,
  37. stride=1,
  38. groups=1,
  39. is_vd_mode=False,
  40. act=None,
  41. name=None, ):
  42. super(ConvBNLayer, self).__init__()
  43. self.is_vd_mode = is_vd_mode
  44. self._pool2d_avg = AvgPool2D(
  45. kernel_size=2, stride=2, padding=0, ceil_mode=True)
  46. self._conv = Conv2D(
  47. in_channels=num_channels,
  48. out_channels=num_filters,
  49. kernel_size=filter_size,
  50. stride=stride,
  51. padding=(filter_size - 1) // 2,
  52. groups=groups,
  53. weight_attr=ParamAttr(name=name + "_weights"),
  54. bias_attr=False)
  55. if name == "conv1":
  56. bn_name = "bn_" + name
  57. else:
  58. bn_name = "bn" + name[3:]
  59. self._batch_norm = BatchNorm(
  60. num_filters,
  61. act=act,
  62. param_attr=ParamAttr(name=bn_name + '_scale'),
  63. bias_attr=ParamAttr(bn_name + '_offset'),
  64. moving_mean_name=bn_name + '_mean',
  65. moving_variance_name=bn_name + '_variance')
  66. def forward(self, inputs):
  67. if self.is_vd_mode:
  68. inputs = self._pool2d_avg(inputs)
  69. y = self._conv(inputs)
  70. y = self._batch_norm(y)
  71. return y
  72. class BottleneckBlock(nn.Layer):
  73. def __init__(self,
  74. num_channels1,
  75. num_channels2,
  76. num_filters,
  77. stride,
  78. scales,
  79. shortcut=True,
  80. if_first=False,
  81. name=None):
  82. super(BottleneckBlock, self).__init__()
  83. self.stride = stride
  84. self.scales = scales
  85. self.conv0 = ConvBNLayer(
  86. num_channels=num_channels1,
  87. num_filters=num_filters,
  88. filter_size=1,
  89. act='relu',
  90. name=name + "_branch2a")
  91. self.conv1_list = []
  92. for s in range(scales - 1):
  93. conv1 = self.add_sublayer(
  94. name + '_branch2b_' + str(s + 1),
  95. ConvBNLayer(
  96. num_channels=num_filters // scales,
  97. num_filters=num_filters // scales,
  98. filter_size=3,
  99. stride=stride,
  100. act='relu',
  101. name=name + '_branch2b_' + str(s + 1)))
  102. self.conv1_list.append(conv1)
  103. self.pool2d_avg = AvgPool2D(kernel_size=3, stride=stride, padding=1)
  104. self.conv2 = ConvBNLayer(
  105. num_channels=num_filters,
  106. num_filters=num_channels2,
  107. filter_size=1,
  108. act=None,
  109. name=name + "_branch2c")
  110. if not shortcut:
  111. self.short = ConvBNLayer(
  112. num_channels=num_channels1,
  113. num_filters=num_channels2,
  114. filter_size=1,
  115. stride=1,
  116. is_vd_mode=False if if_first else True,
  117. name=name + "_branch1")
  118. self.shortcut = shortcut
  119. def forward(self, inputs):
  120. y = self.conv0(inputs)
  121. xs = paddle.split(y, self.scales, 1)
  122. ys = []
  123. for s, conv1 in enumerate(self.conv1_list):
  124. if s == 0 or self.stride == 2:
  125. ys.append(conv1(xs[s]))
  126. else:
  127. ys.append(conv1(xs[s] + ys[-1]))
  128. if self.stride == 1:
  129. ys.append(xs[-1])
  130. else:
  131. ys.append(self.pool2d_avg(xs[-1]))
  132. conv1 = paddle.concat(ys, axis=1)
  133. conv2 = self.conv2(conv1)
  134. if self.shortcut:
  135. short = inputs
  136. else:
  137. short = self.short(inputs)
  138. y = paddle.add(x=short, y=conv2)
  139. y = F.relu(y)
  140. return y
  141. class Res2Net_vd(nn.Layer):
  142. def __init__(self, layers=50, scales=4, width=26, class_dim=1000):
  143. super(Res2Net_vd, self).__init__()
  144. self.layers = layers
  145. self.scales = scales
  146. self.width = width
  147. basic_width = self.width * self.scales
  148. supported_layers = [50, 101, 152, 200]
  149. assert layers in supported_layers, \
  150. "supported layers are {} but input layer is {}".format(
  151. supported_layers, layers)
  152. if layers == 50:
  153. depth = [3, 4, 6, 3]
  154. elif layers == 101:
  155. depth = [3, 4, 23, 3]
  156. elif layers == 152:
  157. depth = [3, 8, 36, 3]
  158. elif layers == 200:
  159. depth = [3, 12, 48, 3]
  160. num_channels = [64, 256, 512, 1024]
  161. num_channels2 = [256, 512, 1024, 2048]
  162. num_filters = [basic_width * t for t in [1, 2, 4, 8]]
  163. self.conv1_1 = ConvBNLayer(
  164. num_channels=3,
  165. num_filters=32,
  166. filter_size=3,
  167. stride=2,
  168. act='relu',
  169. name="conv1_1")
  170. self.conv1_2 = ConvBNLayer(
  171. num_channels=32,
  172. num_filters=32,
  173. filter_size=3,
  174. stride=1,
  175. act='relu',
  176. name="conv1_2")
  177. self.conv1_3 = ConvBNLayer(
  178. num_channels=32,
  179. num_filters=64,
  180. filter_size=3,
  181. stride=1,
  182. act='relu',
  183. name="conv1_3")
  184. self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
  185. self.block_list = []
  186. for block in range(len(depth)):
  187. shortcut = False
  188. for i in range(depth[block]):
  189. if layers in [101, 152, 200] and block == 2:
  190. if i == 0:
  191. conv_name = "res" + str(block + 2) + "a"
  192. else:
  193. conv_name = "res" + str(block + 2) + "b" + str(i)
  194. else:
  195. conv_name = "res" + str(block + 2) + chr(97 + i)
  196. bottleneck_block = self.add_sublayer(
  197. 'bb_%d_%d' % (block, i),
  198. BottleneckBlock(
  199. num_channels1=num_channels[block]
  200. if i == 0 else num_channels2[block],
  201. num_channels2=num_channels2[block],
  202. num_filters=num_filters[block],
  203. stride=2 if i == 0 and block != 0 else 1,
  204. scales=scales,
  205. shortcut=shortcut,
  206. if_first=block == i == 0,
  207. name=conv_name))
  208. self.block_list.append(bottleneck_block)
  209. shortcut = True
  210. self.pool2d_avg = AdaptiveAvgPool2D(1)
  211. self.pool2d_avg_channels = num_channels[-1] * 2
  212. stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
  213. self.out = Linear(
  214. self.pool2d_avg_channels,
  215. class_dim,
  216. weight_attr=ParamAttr(
  217. initializer=Uniform(-stdv, stdv), name="fc_weights"),
  218. bias_attr=ParamAttr(name="fc_offset"))
  219. def forward(self, inputs):
  220. y = self.conv1_1(inputs)
  221. y = self.conv1_2(y)
  222. y = self.conv1_3(y)
  223. y = self.pool2d_max(y)
  224. for block in self.block_list:
  225. y = block(y)
  226. y = self.pool2d_avg(y)
  227. y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
  228. y = self.out(y)
  229. return y
  230. def Res2Net50_vd_48w_2s(**args):
  231. model = Res2Net_vd(layers=50, scales=2, width=48, **args)
  232. return model
  233. def Res2Net50_vd_26w_4s(**args):
  234. model = Res2Net_vd(layers=50, scales=4, width=26, **args)
  235. return model
  236. def Res2Net50_vd_14w_8s(**args):
  237. model = Res2Net_vd(layers=50, scales=8, width=14, **args)
  238. return model
  239. def Res2Net50_vd_26w_6s(**args):
  240. model = Res2Net_vd(layers=50, scales=6, width=26, **args)
  241. return model
  242. def Res2Net50_vd_26w_8s(**args):
  243. model = Res2Net_vd(layers=50, scales=8, width=26, **args)
  244. return model
  245. def Res2Net101_vd_26w_4s(**args):
  246. model = Res2Net_vd(layers=101, scales=4, width=26, **args)
  247. return model
  248. def Res2Net152_vd_26w_4s(**args):
  249. model = Res2Net_vd(layers=152, scales=4, width=26, **args)
  250. return model
  251. def Res2Net200_vd_26w_4s(**args):
  252. model = Res2Net_vd(layers=200, scales=4, width=26, **args)
  253. return model