| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import paddle
- import math
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.nn.initializer import KaimingNormal
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
- from paddle.regularizer import L2Decay
- __all__ = ["ResNeSt50_fast_1s1x64d", "ResNeSt50", "ResNeSt101"]
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- filter_size,
- stride=1,
- dilation=1,
- groups=1,
- act=None,
- name=None):
- super(ConvBNLayer, self).__init__()
- bn_decay = 0.0
- self._conv = Conv2D(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=filter_size,
- stride=stride,
- padding=(filter_size - 1) // 2,
- dilation=dilation,
- groups=groups,
- weight_attr=ParamAttr(name=name + "_weight"),
- bias_attr=False)
- self._batch_norm = BatchNorm(
- num_filters,
- act=act,
- param_attr=ParamAttr(
- name=name + "_scale", regularizer=L2Decay(bn_decay)),
- bias_attr=ParamAttr(
- name + "_offset", regularizer=L2Decay(bn_decay)),
- moving_mean_name=name + "_mean",
- moving_variance_name=name + "_variance")
- def forward(self, x):
- x = self._conv(x)
- x = self._batch_norm(x)
- return x
- class rSoftmax(nn.Layer):
- def __init__(self, radix, cardinality):
- super(rSoftmax, self).__init__()
- self.radix = radix
- self.cardinality = cardinality
- def forward(self, x):
- cardinality = self.cardinality
- radix = self.radix
- batch, r, h, w = x.shape
- if self.radix > 1:
- x = paddle.reshape(
- x=x,
- shape=[
- batch, cardinality, radix,
- int(r * h * w / cardinality / radix)
- ])
- x = paddle.transpose(x=x, perm=[0, 2, 1, 3])
- x = nn.functional.softmax(x, axis=1)
- x = paddle.reshape(x=x, shape=[batch, r * h * w, 1, 1])
- else:
- x = nn.functional.sigmoid(x)
- return x
- class SplatConv(nn.Layer):
- def __init__(self,
- in_channels,
- channels,
- kernel_size,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- bias=True,
- radix=2,
- reduction_factor=4,
- rectify_avg=False,
- name=None):
- super(SplatConv, self).__init__()
- self.radix = radix
- self.conv1 = ConvBNLayer(
- num_channels=in_channels,
- num_filters=channels * radix,
- filter_size=kernel_size,
- stride=stride,
- groups=groups * radix,
- act="relu",
- name=name + "_1_weights")
- self.avg_pool2d = AdaptiveAvgPool2D(1)
- inter_channels = int(max(in_channels * radix // reduction_factor, 32))
- # to calc gap
- self.conv2 = ConvBNLayer(
- num_channels=channels,
- num_filters=inter_channels,
- filter_size=1,
- stride=1,
- groups=groups,
- act="relu",
- name=name + "_2_weights")
- # to calc atten
- self.conv3 = Conv2D(
- in_channels=inter_channels,
- out_channels=channels * radix,
- kernel_size=1,
- stride=1,
- padding=0,
- groups=groups,
- weight_attr=ParamAttr(
- name=name + "_weights", initializer=KaimingNormal()),
- bias_attr=False)
- self.rsoftmax = rSoftmax(radix=radix, cardinality=groups)
- def forward(self, x):
- x = self.conv1(x)
- if self.radix > 1:
- splited = paddle.split(x, num_or_sections=self.radix, axis=1)
- gap = paddle.add_n(splited)
- else:
- gap = x
- gap = self.avg_pool2d(gap)
- gap = self.conv2(gap)
- atten = self.conv3(gap)
- atten = self.rsoftmax(atten)
- if self.radix > 1:
- attens = paddle.split(atten, num_or_sections=self.radix, axis=1)
- y = paddle.add_n([
- paddle.multiply(split, att)
- for (att, split) in zip(attens, splited)
- ])
- else:
- y = paddle.multiply(x, atten)
- return y
- class BottleneckBlock(nn.Layer):
- def __init__(self,
- inplanes,
- planes,
- stride=1,
- radix=1,
- cardinality=1,
- bottleneck_width=64,
- avd=False,
- avd_first=False,
- dilation=1,
- is_first=False,
- rectify_avg=False,
- last_gamma=False,
- avg_down=False,
- name=None):
- super(BottleneckBlock, self).__init__()
- self.inplanes = inplanes
- self.planes = planes
- self.stride = stride
- self.radix = radix
- self.cardinality = cardinality
- self.avd = avd
- self.avd_first = avd_first
- self.dilation = dilation
- self.is_first = is_first
- self.rectify_avg = rectify_avg
- self.last_gamma = last_gamma
- self.avg_down = avg_down
- group_width = int(planes * (bottleneck_width / 64.)) * cardinality
- self.conv1 = ConvBNLayer(
- num_channels=self.inplanes,
- num_filters=group_width,
- filter_size=1,
- stride=1,
- groups=1,
- act="relu",
- name=name + "_conv1")
- if avd and avd_first and (stride > 1 or is_first):
- self.avg_pool2d_1 = AvgPool2D(
- kernel_size=3, stride=stride, padding=1)
- if radix >= 1:
- self.conv2 = SplatConv(
- in_channels=group_width,
- channels=group_width,
- kernel_size=3,
- stride=1,
- padding=dilation,
- dilation=dilation,
- groups=cardinality,
- bias=False,
- radix=radix,
- rectify_avg=rectify_avg,
- name=name + "_splat")
- else:
- self.conv2 = ConvBNLayer(
- num_channels=group_width,
- num_filters=group_width,
- filter_size=3,
- stride=1,
- dilation=dilation,
- groups=cardinality,
- act="relu",
- name=name + "_conv2")
- if avd and avd_first == False and (stride > 1 or is_first):
- self.avg_pool2d_2 = AvgPool2D(
- kernel_size=3, stride=stride, padding=1)
- self.conv3 = ConvBNLayer(
- num_channels=group_width,
- num_filters=planes * 4,
- filter_size=1,
- stride=1,
- groups=1,
- act=None,
- name=name + "_conv3")
- if stride != 1 or self.inplanes != self.planes * 4:
- if avg_down:
- if dilation == 1:
- self.avg_pool2d_3 = AvgPool2D(
- kernel_size=stride, stride=stride, padding=0)
- else:
- self.avg_pool2d_3 = AvgPool2D(
- kernel_size=1, stride=1, padding=0, ceil_mode=True)
- self.conv4 = Conv2D(
- in_channels=self.inplanes,
- out_channels=planes * 4,
- kernel_size=1,
- stride=1,
- padding=0,
- groups=1,
- weight_attr=ParamAttr(
- name=name + "_weights", initializer=KaimingNormal()),
- bias_attr=False)
- else:
- self.conv4 = Conv2D(
- in_channels=self.inplanes,
- out_channels=planes * 4,
- kernel_size=1,
- stride=stride,
- padding=0,
- groups=1,
- weight_attr=ParamAttr(
- name=name + "_shortcut_weights",
- initializer=KaimingNormal()),
- bias_attr=False)
- bn_decay = 0.0
- self._batch_norm = BatchNorm(
- planes * 4,
- act=None,
- param_attr=ParamAttr(
- name=name + "_shortcut_scale",
- regularizer=L2Decay(bn_decay)),
- bias_attr=ParamAttr(
- name + "_shortcut_offset", regularizer=L2Decay(bn_decay)),
- moving_mean_name=name + "_shortcut_mean",
- moving_variance_name=name + "_shortcut_variance")
- def forward(self, x):
- short = x
- x = self.conv1(x)
- if self.avd and self.avd_first and (self.stride > 1 or self.is_first):
- x = self.avg_pool2d_1(x)
- x = self.conv2(x)
- if self.avd and self.avd_first == False and (self.stride > 1 or
- self.is_first):
- x = self.avg_pool2d_2(x)
- x = self.conv3(x)
- if self.stride != 1 or self.inplanes != self.planes * 4:
- if self.avg_down:
- short = self.avg_pool2d_3(short)
- short = self.conv4(short)
- short = self._batch_norm(short)
- y = paddle.add(x=short, y=x)
- y = F.relu(y)
- return y
- class ResNeStLayer(nn.Layer):
- def __init__(self,
- inplanes,
- planes,
- blocks,
- radix,
- cardinality,
- bottleneck_width,
- avg_down,
- avd,
- avd_first,
- rectify_avg,
- last_gamma,
- stride=1,
- dilation=1,
- is_first=True,
- name=None):
- super(ResNeStLayer, self).__init__()
- self.inplanes = inplanes
- self.planes = planes
- self.blocks = blocks
- self.radix = radix
- self.cardinality = cardinality
- self.bottleneck_width = bottleneck_width
- self.avg_down = avg_down
- self.avd = avd
- self.avd_first = avd_first
- self.rectify_avg = rectify_avg
- self.last_gamma = last_gamma
- self.is_first = is_first
- if dilation == 1 or dilation == 2:
- bottleneck_func = self.add_sublayer(
- name + "_bottleneck_0",
- BottleneckBlock(
- inplanes=self.inplanes,
- planes=planes,
- stride=stride,
- radix=radix,
- cardinality=cardinality,
- bottleneck_width=bottleneck_width,
- avg_down=self.avg_down,
- avd=avd,
- avd_first=avd_first,
- dilation=1,
- is_first=is_first,
- rectify_avg=rectify_avg,
- last_gamma=last_gamma,
- name=name + "_bottleneck_0"))
- elif dilation == 4:
- bottleneck_func = self.add_sublayer(
- name + "_bottleneck_0",
- BottleneckBlock(
- inplanes=self.inplanes,
- planes=planes,
- stride=stride,
- radix=radix,
- cardinality=cardinality,
- bottleneck_width=bottleneck_width,
- avg_down=self.avg_down,
- avd=avd,
- avd_first=avd_first,
- dilation=2,
- is_first=is_first,
- rectify_avg=rectify_avg,
- last_gamma=last_gamma,
- name=name + "_bottleneck_0"))
- else:
- raise RuntimeError("=>unknown dilation size")
- self.inplanes = planes * 4
- self.bottleneck_block_list = [bottleneck_func]
- for i in range(1, blocks):
- curr_name = name + "_bottleneck_" + str(i)
- bottleneck_func = self.add_sublayer(
- curr_name,
- BottleneckBlock(
- inplanes=self.inplanes,
- planes=planes,
- radix=radix,
- cardinality=cardinality,
- bottleneck_width=bottleneck_width,
- avg_down=self.avg_down,
- avd=avd,
- avd_first=avd_first,
- dilation=dilation,
- rectify_avg=rectify_avg,
- last_gamma=last_gamma,
- name=curr_name))
- self.bottleneck_block_list.append(bottleneck_func)
- def forward(self, x):
- for bottleneck_block in self.bottleneck_block_list:
- x = bottleneck_block(x)
- return x
- class ResNeSt(nn.Layer):
- def __init__(self,
- layers,
- radix=1,
- groups=1,
- bottleneck_width=64,
- dilated=False,
- dilation=1,
- deep_stem=False,
- stem_width=64,
- avg_down=False,
- rectify_avg=False,
- avd=False,
- avd_first=False,
- final_drop=0.0,
- last_gamma=False,
- class_dim=1000):
- super(ResNeSt, self).__init__()
- self.cardinality = groups
- self.bottleneck_width = bottleneck_width
- # ResNet-D params
- self.inplanes = stem_width * 2 if deep_stem else 64
- self.avg_down = avg_down
- self.last_gamma = last_gamma
- # ResNeSt params
- self.radix = radix
- self.avd = avd
- self.avd_first = avd_first
- self.deep_stem = deep_stem
- self.stem_width = stem_width
- self.layers = layers
- self.final_drop = final_drop
- self.dilated = dilated
- self.dilation = dilation
- self.rectify_avg = rectify_avg
- if self.deep_stem:
- self.stem = nn.Sequential(
- ("conv1", ConvBNLayer(
- num_channels=3,
- num_filters=stem_width,
- filter_size=3,
- stride=2,
- act="relu",
- name="conv1")), ("conv2", ConvBNLayer(
- num_channels=stem_width,
- num_filters=stem_width,
- filter_size=3,
- stride=1,
- act="relu",
- name="conv2")), ("conv3", ConvBNLayer(
- num_channels=stem_width,
- num_filters=stem_width * 2,
- filter_size=3,
- stride=1,
- act="relu",
- name="conv3")))
- else:
- self.stem = ConvBNLayer(
- num_channels=3,
- num_filters=stem_width,
- filter_size=7,
- stride=2,
- act="relu",
- name="conv1")
- self.max_pool2d = MaxPool2D(kernel_size=3, stride=2, padding=1)
- self.layer1 = ResNeStLayer(
- inplanes=self.stem_width * 2
- if self.deep_stem else self.stem_width,
- planes=64,
- blocks=self.layers[0],
- radix=radix,
- cardinality=self.cardinality,
- bottleneck_width=bottleneck_width,
- avg_down=self.avg_down,
- avd=avd,
- avd_first=avd_first,
- rectify_avg=rectify_avg,
- last_gamma=last_gamma,
- stride=1,
- dilation=1,
- is_first=False,
- name="layer1")
- # return
- self.layer2 = ResNeStLayer(
- inplanes=256,
- planes=128,
- blocks=self.layers[1],
- radix=radix,
- cardinality=self.cardinality,
- bottleneck_width=bottleneck_width,
- avg_down=self.avg_down,
- avd=avd,
- avd_first=avd_first,
- rectify_avg=rectify_avg,
- last_gamma=last_gamma,
- stride=2,
- name="layer2")
- if self.dilated or self.dilation == 4:
- self.layer3 = ResNeStLayer(
- inplanes=512,
- planes=256,
- blocks=self.layers[2],
- radix=radix,
- cardinality=self.cardinality,
- bottleneck_width=bottleneck_width,
- avg_down=self.avg_down,
- avd=avd,
- avd_first=avd_first,
- rectify_avg=rectify_avg,
- last_gamma=last_gamma,
- stride=1,
- dilation=2,
- name="layer3")
- self.layer4 = ResNeStLayer(
- inplanes=1024,
- planes=512,
- blocks=self.layers[3],
- radix=radix,
- cardinality=self.cardinality,
- bottleneck_width=bottleneck_width,
- avg_down=self.avg_down,
- avd=avd,
- avd_first=avd_first,
- rectify_avg=rectify_avg,
- last_gamma=last_gamma,
- stride=1,
- dilation=4,
- name="layer4")
- elif self.dilation == 2:
- self.layer3 = ResNeStLayer(
- inplanes=512,
- planes=256,
- blocks=self.layers[2],
- radix=radix,
- cardinality=self.cardinality,
- bottleneck_width=bottleneck_width,
- avg_down=self.avg_down,
- avd=avd,
- avd_first=avd_first,
- rectify_avg=rectify_avg,
- last_gamma=last_gamma,
- stride=2,
- dilation=1,
- name="layer3")
- self.layer4 = ResNeStLayer(
- inplanes=1024,
- planes=512,
- blocks=self.layers[3],
- radix=radix,
- cardinality=self.cardinality,
- bottleneck_width=bottleneck_width,
- avg_down=self.avg_down,
- avd=avd,
- avd_first=avd_first,
- rectify_avg=rectify_avg,
- last_gamma=last_gamma,
- stride=1,
- dilation=2,
- name="layer4")
- else:
- self.layer3 = ResNeStLayer(
- inplanes=512,
- planes=256,
- blocks=self.layers[2],
- radix=radix,
- cardinality=self.cardinality,
- bottleneck_width=bottleneck_width,
- avg_down=self.avg_down,
- avd=avd,
- avd_first=avd_first,
- rectify_avg=rectify_avg,
- last_gamma=last_gamma,
- stride=2,
- name="layer3")
- self.layer4 = ResNeStLayer(
- inplanes=1024,
- planes=512,
- blocks=self.layers[3],
- radix=radix,
- cardinality=self.cardinality,
- bottleneck_width=bottleneck_width,
- avg_down=self.avg_down,
- avd=avd,
- avd_first=avd_first,
- rectify_avg=rectify_avg,
- last_gamma=last_gamma,
- stride=2,
- name="layer4")
- self.pool2d_avg = AdaptiveAvgPool2D(1)
- self.out_channels = 2048
- stdv = 1.0 / math.sqrt(self.out_channels * 1.0)
- self.out = Linear(
- self.out_channels,
- class_dim,
- weight_attr=ParamAttr(
- initializer=nn.initializer.Uniform(-stdv, stdv),
- name="fc_weights"),
- bias_attr=ParamAttr(name="fc_offset"))
- def forward(self, x):
- x = self.stem(x)
- x = self.max_pool2d(x)
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
- x = self.pool2d_avg(x)
- x = paddle.reshape(x, shape=[-1, self.out_channels])
- x = self.out(x)
- return x
- def ResNeSt50_fast_1s1x64d(**args):
- model = ResNeSt(
- layers=[3, 4, 6, 3],
- radix=1,
- groups=1,
- bottleneck_width=64,
- deep_stem=True,
- stem_width=32,
- avg_down=True,
- avd=True,
- avd_first=True,
- final_drop=0.0,
- **args)
- return model
- def ResNeSt50(**args):
- model = ResNeSt(
- layers=[3, 4, 6, 3],
- radix=2,
- groups=1,
- bottleneck_width=64,
- deep_stem=True,
- stem_width=32,
- avg_down=True,
- avd=True,
- avd_first=False,
- final_drop=0.0,
- **args)
- return model
- def ResNeSt101(**args):
- model = ResNeSt(
- layers=[3, 4, 23, 3],
- radix=2,
- groups=1,
- bottleneck_width=64,
- deep_stem=True,
- stem_width=64,
- avg_down=True,
- avd=True,
- avd_first=False,
- final_drop=0.0,
- **args)
- return model
|