resnet_vc.py 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. import numpy as np
  18. import paddle
  19. from paddle import ParamAttr
  20. import paddle.nn as nn
  21. import paddle.nn.functional as F
  22. from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
  23. from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
  24. from paddle.nn.initializer import Uniform
  25. import math
  26. __all__ = [
  27. "ResNet18_vc", "ResNet34_vc", "ResNet50_vc", "ResNet101_vc", "ResNet152_vc"
  28. ]
  29. class ConvBNLayer(nn.Layer):
  30. def __init__(self,
  31. num_channels,
  32. num_filters,
  33. filter_size,
  34. stride=1,
  35. groups=1,
  36. act=None,
  37. name=None):
  38. super(ConvBNLayer, self).__init__()
  39. self._conv = Conv2D(
  40. in_channels=num_channels,
  41. out_channels=num_filters,
  42. kernel_size=filter_size,
  43. stride=stride,
  44. padding=(filter_size - 1) // 2,
  45. groups=groups,
  46. weight_attr=ParamAttr(name=name + "_weights"),
  47. bias_attr=False)
  48. if name == "conv1":
  49. bn_name = "bn_" + name
  50. else:
  51. bn_name = "bn" + name[3:]
  52. self._batch_norm = BatchNorm(
  53. num_filters,
  54. act=act,
  55. param_attr=ParamAttr(name=bn_name + '_scale'),
  56. bias_attr=ParamAttr(bn_name + '_offset'),
  57. moving_mean_name=bn_name + '_mean',
  58. moving_variance_name=bn_name + '_variance')
  59. def forward(self, inputs):
  60. y = self._conv(inputs)
  61. y = self._batch_norm(y)
  62. return y
  63. class BottleneckBlock(nn.Layer):
  64. def __init__(self,
  65. num_channels,
  66. num_filters,
  67. stride,
  68. shortcut=True,
  69. name=None):
  70. super(BottleneckBlock, self).__init__()
  71. self.conv0 = ConvBNLayer(
  72. num_channels=num_channels,
  73. num_filters=num_filters,
  74. filter_size=1,
  75. act='relu',
  76. name=name + "_branch2a")
  77. self.conv1 = ConvBNLayer(
  78. num_channels=num_filters,
  79. num_filters=num_filters,
  80. filter_size=3,
  81. stride=stride,
  82. act='relu',
  83. name=name + "_branch2b")
  84. self.conv2 = ConvBNLayer(
  85. num_channels=num_filters,
  86. num_filters=num_filters * 4,
  87. filter_size=1,
  88. act=None,
  89. name=name + "_branch2c")
  90. if not shortcut:
  91. self.short = ConvBNLayer(
  92. num_channels=num_channels,
  93. num_filters=num_filters * 4,
  94. filter_size=1,
  95. stride=stride,
  96. name=name + "_branch1")
  97. self.shortcut = shortcut
  98. self._num_channels_out = num_filters * 4
  99. def forward(self, inputs):
  100. y = self.conv0(inputs)
  101. conv1 = self.conv1(y)
  102. conv2 = self.conv2(conv1)
  103. if self.shortcut:
  104. short = inputs
  105. else:
  106. short = self.short(inputs)
  107. y = paddle.add(x=short, y=conv2)
  108. y = F.relu(y)
  109. return y
  110. class BasicBlock(nn.Layer):
  111. def __init__(self,
  112. num_channels,
  113. num_filters,
  114. stride,
  115. shortcut=True,
  116. name=None):
  117. super(BasicBlock, self).__init__()
  118. self.stride = stride
  119. self.conv0 = ConvBNLayer(
  120. num_channels=num_channels,
  121. num_filters=num_filters,
  122. filter_size=3,
  123. stride=stride,
  124. act='relu',
  125. name=name + "_branch2a")
  126. self.conv1 = ConvBNLayer(
  127. num_channels=num_filters,
  128. num_filters=num_filters,
  129. filter_size=3,
  130. act=None,
  131. name=name + "_branch2b")
  132. if not shortcut:
  133. self.short = ConvBNLayer(
  134. num_channels=num_channels,
  135. num_filters=num_filters,
  136. filter_size=1,
  137. stride=stride,
  138. name=name + "_branch1")
  139. self.shortcut = shortcut
  140. def forward(self, inputs):
  141. y = self.conv0(inputs)
  142. conv1 = self.conv1(y)
  143. if self.shortcut:
  144. short = inputs
  145. else:
  146. short = self.short(inputs)
  147. y = paddle.add(x=short, y=conv1)
  148. y = F.relu(y)
  149. return y
  150. class ResNet_vc(nn.Layer):
  151. def __init__(self, layers=50, class_dim=1000):
  152. super(ResNet_vc, self).__init__()
  153. self.layers = layers
  154. supported_layers = [18, 34, 50, 101, 152]
  155. assert layers in supported_layers, \
  156. "supported layers are {} but input layer is {}".format(
  157. supported_layers, layers)
  158. if layers == 18:
  159. depth = [2, 2, 2, 2]
  160. elif layers == 34 or layers == 50:
  161. depth = [3, 4, 6, 3]
  162. elif layers == 101:
  163. depth = [3, 4, 23, 3]
  164. elif layers == 152:
  165. depth = [3, 8, 36, 3]
  166. num_channels = [64, 256, 512,
  167. 1024] if layers >= 50 else [64, 64, 128, 256]
  168. num_filters = [64, 128, 256, 512]
  169. self.conv1_1 = ConvBNLayer(
  170. num_channels=3,
  171. num_filters=32,
  172. filter_size=3,
  173. stride=2,
  174. act='relu',
  175. name="conv1_1")
  176. self.conv1_2 = ConvBNLayer(
  177. num_channels=32,
  178. num_filters=32,
  179. filter_size=3,
  180. stride=1,
  181. act='relu',
  182. name="conv1_2")
  183. self.conv1_3 = ConvBNLayer(
  184. num_channels=32,
  185. num_filters=64,
  186. filter_size=3,
  187. stride=1,
  188. act='relu',
  189. name="conv1_3")
  190. self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
  191. self.block_list = []
  192. if layers >= 50:
  193. for block in range(len(depth)):
  194. shortcut = False
  195. for i in range(depth[block]):
  196. if layers in [101, 152] and block == 2:
  197. if i == 0:
  198. conv_name = "res" + str(block + 2) + "a"
  199. else:
  200. conv_name = "res" + str(block + 2) + "b" + str(i)
  201. else:
  202. conv_name = "res" + str(block + 2) + chr(97 + i)
  203. bottleneck_block = self.add_sublayer(
  204. 'bb_%d_%d' % (block, i),
  205. BottleneckBlock(
  206. num_channels=num_channels[block]
  207. if i == 0 else num_filters[block] * 4,
  208. num_filters=num_filters[block],
  209. stride=2 if i == 0 and block != 0 else 1,
  210. shortcut=shortcut,
  211. name=conv_name))
  212. self.block_list.append(bottleneck_block)
  213. shortcut = True
  214. else:
  215. for block in range(len(depth)):
  216. shortcut = False
  217. for i in range(depth[block]):
  218. conv_name = "res" + str(block + 2) + chr(97 + i)
  219. basic_block = self.add_sublayer(
  220. 'bb_%d_%d' % (block, i),
  221. BasicBlock(
  222. num_channels=num_channels[block]
  223. if i == 0 else num_filters[block],
  224. num_filters=num_filters[block],
  225. stride=2 if i == 0 and block != 0 else 1,
  226. shortcut=shortcut,
  227. name=conv_name))
  228. self.block_list.append(basic_block)
  229. shortcut = True
  230. self.pool2d_avg = AdaptiveAvgPool2D(1)
  231. self.pool2d_avg_channels = num_channels[-1] * 2
  232. stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
  233. self.out = Linear(
  234. self.pool2d_avg_channels,
  235. class_dim,
  236. weight_attr=ParamAttr(
  237. initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
  238. bias_attr=ParamAttr(name="fc_0.b_0"))
  239. def forward(self, inputs):
  240. y = self.conv1_1(inputs)
  241. y = self.conv1_2(y)
  242. y = self.conv1_3(y)
  243. y = self.pool2d_max(y)
  244. for block in self.block_list:
  245. y = block(y)
  246. y = self.pool2d_avg(y)
  247. y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
  248. y = self.out(y)
  249. return y
  250. def ResNet18_vc(**args):
  251. model = ResNet_vc(layers=18, **args)
  252. return model
  253. def ResNet34_vc(**args):
  254. model = ResNet_vc(layers=34, **args)
  255. return model
  256. def ResNet50_vc(**args):
  257. model = ResNet_vc(layers=50, **args)
  258. return model
  259. def ResNet101_vc(**args):
  260. model = ResNet_vc(layers=101, **args)
  261. return model
  262. def ResNet152_vc(**args):
  263. model = ResNet_vc(layers=152, **args)
  264. return model