resnext_vd.py 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. import numpy as np
  18. import paddle
  19. from paddle import ParamAttr
  20. import paddle.nn as nn
  21. import paddle.nn.functional as F
  22. from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
  23. from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
  24. from paddle.nn.initializer import Uniform
  25. import math
  26. __all__ = [
  27. "ResNeXt50_vd_32x4d", "ResNeXt50_vd_64x4d", "ResNeXt101_vd_32x4d",
  28. "ResNeXt101_vd_64x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_vd_64x4d"
  29. ]
  30. class ConvBNLayer(nn.Layer):
  31. def __init__(
  32. self,
  33. num_channels,
  34. num_filters,
  35. filter_size,
  36. stride=1,
  37. groups=1,
  38. is_vd_mode=False,
  39. act=None,
  40. name=None, ):
  41. super(ConvBNLayer, self).__init__()
  42. self.is_vd_mode = is_vd_mode
  43. self._pool2d_avg = AvgPool2D(
  44. kernel_size=2, stride=2, padding=0, ceil_mode=True)
  45. self._conv = Conv2D(
  46. in_channels=num_channels,
  47. out_channels=num_filters,
  48. kernel_size=filter_size,
  49. stride=stride,
  50. padding=(filter_size - 1) // 2,
  51. groups=groups,
  52. weight_attr=ParamAttr(name=name + "_weights"),
  53. bias_attr=False)
  54. if name == "conv1":
  55. bn_name = "bn_" + name
  56. else:
  57. bn_name = "bn" + name[3:]
  58. self._batch_norm = BatchNorm(
  59. num_filters,
  60. act=act,
  61. param_attr=ParamAttr(name=bn_name + '_scale'),
  62. bias_attr=ParamAttr(bn_name + '_offset'),
  63. moving_mean_name=bn_name + '_mean',
  64. moving_variance_name=bn_name + '_variance')
  65. def forward(self, inputs):
  66. if self.is_vd_mode:
  67. inputs = self._pool2d_avg(inputs)
  68. y = self._conv(inputs)
  69. y = self._batch_norm(y)
  70. return y
  71. class BottleneckBlock(nn.Layer):
  72. def __init__(self,
  73. num_channels,
  74. num_filters,
  75. stride,
  76. cardinality,
  77. shortcut=True,
  78. if_first=False,
  79. name=None):
  80. super(BottleneckBlock, self).__init__()
  81. self.conv0 = ConvBNLayer(
  82. num_channels=num_channels,
  83. num_filters=num_filters,
  84. filter_size=1,
  85. act='relu',
  86. name=name + "_branch2a")
  87. self.conv1 = ConvBNLayer(
  88. num_channels=num_filters,
  89. num_filters=num_filters,
  90. filter_size=3,
  91. groups=cardinality,
  92. stride=stride,
  93. act='relu',
  94. name=name + "_branch2b")
  95. self.conv2 = ConvBNLayer(
  96. num_channels=num_filters,
  97. num_filters=num_filters * 2 if cardinality == 32 else num_filters,
  98. filter_size=1,
  99. act=None,
  100. name=name + "_branch2c")
  101. if not shortcut:
  102. self.short = ConvBNLayer(
  103. num_channels=num_channels,
  104. num_filters=num_filters * 2
  105. if cardinality == 32 else num_filters,
  106. filter_size=1,
  107. stride=1,
  108. is_vd_mode=False if if_first else True,
  109. name=name + "_branch1")
  110. self.shortcut = shortcut
  111. def forward(self, inputs):
  112. y = self.conv0(inputs)
  113. conv1 = self.conv1(y)
  114. conv2 = self.conv2(conv1)
  115. if self.shortcut:
  116. short = inputs
  117. else:
  118. short = self.short(inputs)
  119. y = paddle.add(x=short, y=conv2)
  120. y = F.relu(y)
  121. return y
  122. class ResNeXt(nn.Layer):
  123. def __init__(self, layers=50, class_dim=1000, cardinality=32):
  124. super(ResNeXt, self).__init__()
  125. self.layers = layers
  126. self.cardinality = cardinality
  127. supported_layers = [50, 101, 152]
  128. assert layers in supported_layers, \
  129. "supported layers are {} but input layer is {}".format(
  130. supported_layers, layers)
  131. supported_cardinality = [32, 64]
  132. assert cardinality in supported_cardinality, \
  133. "supported cardinality is {} but input cardinality is {}" \
  134. .format(supported_cardinality, cardinality)
  135. if layers == 50:
  136. depth = [3, 4, 6, 3]
  137. elif layers == 101:
  138. depth = [3, 4, 23, 3]
  139. elif layers == 152:
  140. depth = [3, 8, 36, 3]
  141. num_channels = [64, 256, 512, 1024]
  142. num_filters = [128, 256, 512,
  143. 1024] if cardinality == 32 else [256, 512, 1024, 2048]
  144. self.conv1_1 = ConvBNLayer(
  145. num_channels=3,
  146. num_filters=32,
  147. filter_size=3,
  148. stride=2,
  149. act='relu',
  150. name="conv1_1")
  151. self.conv1_2 = ConvBNLayer(
  152. num_channels=32,
  153. num_filters=32,
  154. filter_size=3,
  155. stride=1,
  156. act='relu',
  157. name="conv1_2")
  158. self.conv1_3 = ConvBNLayer(
  159. num_channels=32,
  160. num_filters=64,
  161. filter_size=3,
  162. stride=1,
  163. act='relu',
  164. name="conv1_3")
  165. self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
  166. self.block_list = []
  167. for block in range(len(depth)):
  168. shortcut = False
  169. for i in range(depth[block]):
  170. if layers in [101, 152] and block == 2:
  171. if i == 0:
  172. conv_name = "res" + str(block + 2) + "a"
  173. else:
  174. conv_name = "res" + str(block + 2) + "b" + str(i)
  175. else:
  176. conv_name = "res" + str(block + 2) + chr(97 + i)
  177. bottleneck_block = self.add_sublayer(
  178. 'bb_%d_%d' % (block, i),
  179. BottleneckBlock(
  180. num_channels=num_channels[block] if i == 0 else
  181. num_filters[block] * int(64 // self.cardinality),
  182. num_filters=num_filters[block],
  183. stride=2 if i == 0 and block != 0 else 1,
  184. cardinality=self.cardinality,
  185. shortcut=shortcut,
  186. if_first=block == i == 0,
  187. name=conv_name))
  188. self.block_list.append(bottleneck_block)
  189. shortcut = True
  190. self.pool2d_avg = AdaptiveAvgPool2D(1)
  191. self.pool2d_avg_channels = num_channels[-1] * 2
  192. stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
  193. self.out = Linear(
  194. self.pool2d_avg_channels,
  195. class_dim,
  196. weight_attr=ParamAttr(
  197. initializer=Uniform(-stdv, stdv), name="fc_weights"),
  198. bias_attr=ParamAttr(name="fc_offset"))
  199. def forward(self, inputs):
  200. y = self.conv1_1(inputs)
  201. y = self.conv1_2(y)
  202. y = self.conv1_3(y)
  203. y = self.pool2d_max(y)
  204. for block in self.block_list:
  205. y = block(y)
  206. y = self.pool2d_avg(y)
  207. y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
  208. y = self.out(y)
  209. return y
  210. def ResNeXt50_vd_32x4d(**args):
  211. model = ResNeXt(layers=50, cardinality=32, **args)
  212. return model
  213. def ResNeXt50_vd_64x4d(**args):
  214. model = ResNeXt(layers=50, cardinality=64, **args)
  215. return model
  216. def ResNeXt101_vd_32x4d(**args):
  217. model = ResNeXt(layers=101, cardinality=32, **args)
  218. return model
  219. def ResNeXt101_vd_64x4d(**args):
  220. model = ResNeXt(layers=101, cardinality=64, **args)
  221. return model
  222. def ResNeXt152_vd_32x4d(**args):
  223. model = ResNeXt(layers=152, cardinality=32, **args)
  224. return model
  225. def ResNeXt152_vd_64x4d(**args):
  226. model = ResNeXt(layers=152, cardinality=64, **args)
  227. return model