| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- from math import ceil
- __all__ = [
- "ReXNet_1_0", "ReXNet_1_3", "ReXNet_1_5", "ReXNet_2_0", "ReXNet_3_0"
- ]
- def conv_bn_act(out,
- in_channels,
- channels,
- kernel=1,
- stride=1,
- pad=0,
- num_group=1,
- active=True,
- relu6=False):
- out.append(
- nn.Conv2D(
- in_channels,
- channels,
- kernel,
- stride,
- pad,
- groups=num_group,
- bias_attr=False))
- out.append(nn.BatchNorm2D(channels))
- if active:
- out.append(nn.ReLU6() if relu6 else nn.ReLU())
- def conv_bn_swish(out,
- in_channels,
- channels,
- kernel=1,
- stride=1,
- pad=0,
- num_group=1):
- out.append(
- nn.Conv2D(
- in_channels,
- channels,
- kernel,
- stride,
- pad,
- groups=num_group,
- bias_attr=False))
- out.append(nn.BatchNorm2D(channels))
- out.append(nn.Swish())
- class SE(nn.Layer):
- def __init__(self, in_channels, channels, se_ratio=12):
- super(SE, self).__init__()
- self.avg_pool = nn.AdaptiveAvgPool2D(1)
- self.fc = nn.Sequential(
- nn.Conv2D(
- in_channels, channels // se_ratio, kernel_size=1, padding=0),
- nn.BatchNorm2D(channels // se_ratio),
- nn.ReLU(),
- nn.Conv2D(
- channels // se_ratio, channels, kernel_size=1, padding=0),
- nn.Sigmoid())
- def forward(self, x):
- y = self.avg_pool(x)
- y = self.fc(y)
- return x * y
- class LinearBottleneck(nn.Layer):
- def __init__(self,
- in_channels,
- channels,
- t,
- stride,
- use_se=True,
- se_ratio=12,
- **kwargs):
- super(LinearBottleneck, self).__init__(**kwargs)
- self.use_shortcut = stride == 1 and in_channels <= channels
- self.in_channels = in_channels
- self.out_channels = channels
- out = []
- if t != 1:
- dw_channels = in_channels * t
- conv_bn_swish(out, in_channels=in_channels, channels=dw_channels)
- else:
- dw_channels = in_channels
- conv_bn_act(
- out,
- in_channels=dw_channels,
- channels=dw_channels,
- kernel=3,
- stride=stride,
- pad=1,
- num_group=dw_channels,
- active=False)
- if use_se:
- out.append(SE(dw_channels, dw_channels, se_ratio))
- out.append(nn.ReLU6())
- conv_bn_act(
- out,
- in_channels=dw_channels,
- channels=channels,
- active=False,
- relu6=True)
- self.out = nn.Sequential(*out)
- def forward(self, x):
- out = self.out(x)
- if self.use_shortcut:
- out[:, 0:self.in_channels] += x
- return out
- class ReXNetV1(nn.Layer):
- def __init__(self,
- input_ch=16,
- final_ch=180,
- width_mult=1.0,
- depth_mult=1.0,
- class_dim=1000,
- use_se=True,
- se_ratio=12,
- dropout_ratio=0.2,
- bn_momentum=0.9):
- super(ReXNetV1, self).__init__()
- layers = [1, 2, 2, 3, 3, 5]
- strides = [1, 2, 2, 2, 1, 2]
- use_ses = [False, False, True, True, True, True]
- layers = [ceil(element * depth_mult) for element in layers]
- strides = sum([[element] + [1] * (layers[idx] - 1)
- for idx, element in enumerate(strides)], [])
- if use_se:
- use_ses = sum([[element] * layers[idx]
- for idx, element in enumerate(use_ses)], [])
- else:
- use_ses = [False] * sum(layers[:])
- ts = [1] * layers[0] + [6] * sum(layers[1:])
- self.depth = sum(layers[:]) * 3
- stem_channel = 32 / width_mult if width_mult < 1.0 else 32
- inplanes = input_ch / width_mult if width_mult < 1.0 else input_ch
- features = []
- in_channels_group = []
- channels_group = []
- # The following channel configuration is a simple instance to make each layer become an expand layer.
- for i in range(self.depth // 3):
- if i == 0:
- in_channels_group.append(int(round(stem_channel * width_mult)))
- channels_group.append(int(round(inplanes * width_mult)))
- else:
- in_channels_group.append(int(round(inplanes * width_mult)))
- inplanes += final_ch / (self.depth // 3 * 1.0)
- channels_group.append(int(round(inplanes * width_mult)))
- conv_bn_swish(
- features,
- 3,
- int(round(stem_channel * width_mult)),
- kernel=3,
- stride=2,
- pad=1)
- for block_idx, (in_c, c, t, s, se) in enumerate(
- zip(in_channels_group, channels_group, ts, strides, use_ses)):
- features.append(
- LinearBottleneck(
- in_channels=in_c,
- channels=c,
- t=t,
- stride=s,
- use_se=se,
- se_ratio=se_ratio))
- pen_channels = int(1280 * width_mult)
- conv_bn_swish(features, c, pen_channels)
- features.append(nn.AdaptiveAvgPool2D(1))
- self.features = nn.Sequential(*features)
- self.output = nn.Sequential(
- nn.Dropout(dropout_ratio),
- nn.Conv2D(
- pen_channels, class_dim, 1, bias_attr=True))
- def forward(self, x):
- x = self.features(x)
- x = self.output(x).squeeze(axis=-1).squeeze(axis=-1)
- return x
- def ReXNet_1_0(**args):
- return ReXNetV1(width_mult=1.0, **args)
- def ReXNet_1_3(**args):
- return ReXNetV1(width_mult=1.3, **args)
- def ReXNet_1_5(**args):
- return ReXNetV1(width_mult=1.5, **args)
- def ReXNet_2_0(**args):
- return ReXNetV1(width_mult=2.0, **args)
- def ReXNet_3_0(**args):
- return ReXNetV1(width_mult=3.0, **args)
|