se_resnet_vd.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. #
  2. # Licensed under the Apache License, Version 2.0 (the "License");
  3. # you may not use this file except in compliance with the License.
  4. # You may obtain a copy of the License at
  5. #
  6. # http://www.apache.org/licenses/LICENSE-2.0
  7. #
  8. # Unless required by applicable law or agreed to in writing, software
  9. # distributed under the License is distributed on an "AS IS" BASIS,
  10. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. # See the License for the specific language governing permissions and
  12. # limitations under the License.
  13. from __future__ import absolute_import
  14. from __future__ import division
  15. from __future__ import print_function
  16. import numpy as np
  17. import paddle
  18. from paddle import ParamAttr
  19. import paddle.nn as nn
  20. import paddle.nn.functional as F
  21. from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
  22. from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
  23. from paddle.nn.initializer import Uniform
  24. import math
  25. __all__ = [
  26. "SE_ResNet18_vd", "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNet101_vd",
  27. "SE_ResNet152_vd", "SE_ResNet200_vd"
  28. ]
  29. class ConvBNLayer(nn.Layer):
  30. def __init__(
  31. self,
  32. num_channels,
  33. num_filters,
  34. filter_size,
  35. stride=1,
  36. groups=1,
  37. is_vd_mode=False,
  38. act=None,
  39. name=None, ):
  40. super(ConvBNLayer, self).__init__()
  41. self.is_vd_mode = is_vd_mode
  42. self._pool2d_avg = AvgPool2D(
  43. kernel_size=2, stride=2, padding=0, ceil_mode=True)
  44. self._conv = Conv2D(
  45. in_channels=num_channels,
  46. out_channels=num_filters,
  47. kernel_size=filter_size,
  48. stride=stride,
  49. padding=(filter_size - 1) // 2,
  50. groups=groups,
  51. weight_attr=ParamAttr(name=name + "_weights"),
  52. bias_attr=False)
  53. if name == "conv1":
  54. bn_name = "bn_" + name
  55. else:
  56. bn_name = "bn" + name[3:]
  57. self._batch_norm = BatchNorm(
  58. num_filters,
  59. act=act,
  60. param_attr=ParamAttr(name=bn_name + '_scale'),
  61. bias_attr=ParamAttr(bn_name + '_offset'),
  62. moving_mean_name=bn_name + '_mean',
  63. moving_variance_name=bn_name + '_variance')
  64. def forward(self, inputs):
  65. if self.is_vd_mode:
  66. inputs = self._pool2d_avg(inputs)
  67. y = self._conv(inputs)
  68. y = self._batch_norm(y)
  69. return y
  70. class BottleneckBlock(nn.Layer):
  71. def __init__(self,
  72. num_channels,
  73. num_filters,
  74. stride,
  75. shortcut=True,
  76. if_first=False,
  77. reduction_ratio=16,
  78. name=None):
  79. super(BottleneckBlock, self).__init__()
  80. self.conv0 = ConvBNLayer(
  81. num_channels=num_channels,
  82. num_filters=num_filters,
  83. filter_size=1,
  84. act='relu',
  85. name=name + "_branch2a")
  86. self.conv1 = ConvBNLayer(
  87. num_channels=num_filters,
  88. num_filters=num_filters,
  89. filter_size=3,
  90. stride=stride,
  91. act='relu',
  92. name=name + "_branch2b")
  93. self.conv2 = ConvBNLayer(
  94. num_channels=num_filters,
  95. num_filters=num_filters * 4,
  96. filter_size=1,
  97. act=None,
  98. name=name + "_branch2c")
  99. self.scale = SELayer(
  100. num_channels=num_filters * 4,
  101. num_filters=num_filters * 4,
  102. reduction_ratio=reduction_ratio,
  103. name='fc_' + name)
  104. if not shortcut:
  105. self.short = ConvBNLayer(
  106. num_channels=num_channels,
  107. num_filters=num_filters * 4,
  108. filter_size=1,
  109. stride=1,
  110. is_vd_mode=False if if_first else True,
  111. name=name + "_branch1")
  112. self.shortcut = shortcut
  113. def forward(self, inputs):
  114. y = self.conv0(inputs)
  115. conv1 = self.conv1(y)
  116. conv2 = self.conv2(conv1)
  117. scale = self.scale(conv2)
  118. if self.shortcut:
  119. short = inputs
  120. else:
  121. short = self.short(inputs)
  122. y = paddle.add(x=short, y=scale)
  123. y = F.relu(y)
  124. return y
  125. class BasicBlock(nn.Layer):
  126. def __init__(self,
  127. num_channels,
  128. num_filters,
  129. stride,
  130. shortcut=True,
  131. if_first=False,
  132. reduction_ratio=16,
  133. name=None):
  134. super(BasicBlock, self).__init__()
  135. self.stride = stride
  136. self.conv0 = ConvBNLayer(
  137. num_channels=num_channels,
  138. num_filters=num_filters,
  139. filter_size=3,
  140. stride=stride,
  141. act='relu',
  142. name=name + "_branch2a")
  143. self.conv1 = ConvBNLayer(
  144. num_channels=num_filters,
  145. num_filters=num_filters,
  146. filter_size=3,
  147. act=None,
  148. name=name + "_branch2b")
  149. self.scale = SELayer(
  150. num_channels=num_filters,
  151. num_filters=num_filters,
  152. reduction_ratio=reduction_ratio,
  153. name='fc_' + name)
  154. if not shortcut:
  155. self.short = ConvBNLayer(
  156. num_channels=num_channels,
  157. num_filters=num_filters,
  158. filter_size=1,
  159. stride=1,
  160. is_vd_mode=False if if_first else True,
  161. name=name + "_branch1")
  162. self.shortcut = shortcut
  163. def forward(self, inputs):
  164. y = self.conv0(inputs)
  165. conv1 = self.conv1(y)
  166. scale = self.scale(conv1)
  167. if self.shortcut:
  168. short = inputs
  169. else:
  170. short = self.short(inputs)
  171. y = paddle.add(x=short, y=scale)
  172. y = F.relu(y)
  173. return y
  174. class SELayer(nn.Layer):
  175. def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
  176. super(SELayer, self).__init__()
  177. self.pool2d_gap = AdaptiveAvgPool2D(1)
  178. self._num_channels = num_channels
  179. med_ch = int(num_channels / reduction_ratio)
  180. stdv = 1.0 / math.sqrt(num_channels * 1.0)
  181. self.squeeze = Linear(
  182. num_channels,
  183. med_ch,
  184. weight_attr=ParamAttr(
  185. initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
  186. bias_attr=ParamAttr(name=name + '_sqz_offset'))
  187. stdv = 1.0 / math.sqrt(med_ch * 1.0)
  188. self.excitation = Linear(
  189. med_ch,
  190. num_filters,
  191. weight_attr=ParamAttr(
  192. initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
  193. bias_attr=ParamAttr(name=name + '_exc_offset'))
  194. def forward(self, input):
  195. pool = self.pool2d_gap(input)
  196. pool = paddle.squeeze(pool, axis=[2, 3])
  197. squeeze = self.squeeze(pool)
  198. squeeze = F.relu(squeeze)
  199. excitation = self.excitation(squeeze)
  200. excitation = F.sigmoid(excitation)
  201. excitation = paddle.unsqueeze(excitation, axis=[2, 3])
  202. out = input * excitation
  203. return out
  204. class SE_ResNet_vd(nn.Layer):
  205. def __init__(self, layers=50, class_dim=1000):
  206. super(SE_ResNet_vd, self).__init__()
  207. self.layers = layers
  208. supported_layers = [18, 34, 50, 101, 152, 200]
  209. assert layers in supported_layers, \
  210. "supported layers are {} but input layer is {}".format(
  211. supported_layers, layers)
  212. if layers == 18:
  213. depth = [2, 2, 2, 2]
  214. elif layers == 34 or layers == 50:
  215. depth = [3, 4, 6, 3]
  216. elif layers == 101:
  217. depth = [3, 4, 23, 3]
  218. elif layers == 152:
  219. depth = [3, 8, 36, 3]
  220. elif layers == 200:
  221. depth = [3, 12, 48, 3]
  222. num_channels = [64, 256, 512,
  223. 1024] if layers >= 50 else [64, 64, 128, 256]
  224. num_filters = [64, 128, 256, 512]
  225. self.conv1_1 = ConvBNLayer(
  226. num_channels=3,
  227. num_filters=32,
  228. filter_size=3,
  229. stride=2,
  230. act='relu',
  231. name="conv1_1")
  232. self.conv1_2 = ConvBNLayer(
  233. num_channels=32,
  234. num_filters=32,
  235. filter_size=3,
  236. stride=1,
  237. act='relu',
  238. name="conv1_2")
  239. self.conv1_3 = ConvBNLayer(
  240. num_channels=32,
  241. num_filters=64,
  242. filter_size=3,
  243. stride=1,
  244. act='relu',
  245. name="conv1_3")
  246. self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
  247. self.block_list = []
  248. if layers >= 50:
  249. for block in range(len(depth)):
  250. shortcut = False
  251. for i in range(depth[block]):
  252. if layers in [101, 152] and block == 2:
  253. if i == 0:
  254. conv_name = "res" + str(block + 2) + "a"
  255. else:
  256. conv_name = "res" + str(block + 2) + "b" + str(i)
  257. else:
  258. conv_name = "res" + str(block + 2) + chr(97 + i)
  259. bottleneck_block = self.add_sublayer(
  260. 'bb_%d_%d' % (block, i),
  261. BottleneckBlock(
  262. num_channels=num_channels[block]
  263. if i == 0 else num_filters[block] * 4,
  264. num_filters=num_filters[block],
  265. stride=2 if i == 0 and block != 0 else 1,
  266. shortcut=shortcut,
  267. if_first=block == i == 0,
  268. name=conv_name))
  269. self.block_list.append(bottleneck_block)
  270. shortcut = True
  271. else:
  272. for block in range(len(depth)):
  273. shortcut = False
  274. for i in range(depth[block]):
  275. conv_name = "res" + str(block + 2) + chr(97 + i)
  276. basic_block = self.add_sublayer(
  277. 'bb_%d_%d' % (block, i),
  278. BasicBlock(
  279. num_channels=num_channels[block]
  280. if i == 0 else num_filters[block],
  281. num_filters=num_filters[block],
  282. stride=2 if i == 0 and block != 0 else 1,
  283. shortcut=shortcut,
  284. if_first=block == i == 0,
  285. name=conv_name))
  286. self.block_list.append(basic_block)
  287. shortcut = True
  288. self.pool2d_avg = AdaptiveAvgPool2D(1)
  289. self.pool2d_avg_channels = num_channels[-1] * 2
  290. stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
  291. self.out = Linear(
  292. self.pool2d_avg_channels,
  293. class_dim,
  294. weight_attr=ParamAttr(
  295. initializer=Uniform(-stdv, stdv), name="fc6_weights"),
  296. bias_attr=ParamAttr(name="fc6_offset"))
  297. def forward(self, inputs):
  298. y = self.conv1_1(inputs)
  299. y = self.conv1_2(y)
  300. y = self.conv1_3(y)
  301. y = self.pool2d_max(y)
  302. for block in self.block_list:
  303. y = block(y)
  304. y = self.pool2d_avg(y)
  305. y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
  306. y = self.out(y)
  307. return y
  308. def SE_ResNet18_vd(**args):
  309. model = SE_ResNet_vd(layers=18, **args)
  310. return model
  311. def SE_ResNet34_vd(**args):
  312. model = SE_ResNet_vd(layers=34, **args)
  313. return model
  314. def SE_ResNet50_vd(**args):
  315. model = SE_ResNet_vd(layers=50, **args)
  316. return model
  317. def SE_ResNet101_vd(**args):
  318. model = SE_ResNet_vd(layers=101, **args)
  319. return model
  320. def SE_ResNet152_vd(**args):
  321. model = SE_ResNet_vd(layers=152, **args)
  322. return model
  323. def SE_ResNet200_vd(**args):
  324. model = SE_ResNet_vd(layers=200, **args)
  325. return model