| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
- __all__ = ["VGG11", "VGG13", "VGG16", "VGG19"]
- class ConvBlock(nn.Layer):
- def __init__(self, input_channels, output_channels, groups, name=None):
- super(ConvBlock, self).__init__()
- self.groups = groups
- self._conv_1 = Conv2D(
- in_channels=input_channels,
- out_channels=output_channels,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(name=name + "1_weights"),
- bias_attr=False)
- if groups == 2 or groups == 3 or groups == 4:
- self._conv_2 = Conv2D(
- in_channels=output_channels,
- out_channels=output_channels,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(name=name + "2_weights"),
- bias_attr=False)
- if groups == 3 or groups == 4:
- self._conv_3 = Conv2D(
- in_channels=output_channels,
- out_channels=output_channels,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(name=name + "3_weights"),
- bias_attr=False)
- if groups == 4:
- self._conv_4 = Conv2D(
- in_channels=output_channels,
- out_channels=output_channels,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(name=name + "4_weights"),
- bias_attr=False)
- self._pool = MaxPool2D(kernel_size=2, stride=2, padding=0)
- def forward(self, inputs):
- x = self._conv_1(inputs)
- x = F.relu(x)
- if self.groups == 2 or self.groups == 3 or self.groups == 4:
- x = self._conv_2(x)
- x = F.relu(x)
- if self.groups == 3 or self.groups == 4:
- x = self._conv_3(x)
- x = F.relu(x)
- if self.groups == 4:
- x = self._conv_4(x)
- x = F.relu(x)
- x = self._pool(x)
- return x
- class VGGNet(nn.Layer):
- def __init__(self, layers=11, stop_grad_layers=0, class_dim=1000):
- super(VGGNet, self).__init__()
- self.layers = layers
- self.stop_grad_layers = stop_grad_layers
- self.vgg_configure = {
- 11: [1, 1, 2, 2, 2],
- 13: [2, 2, 2, 2, 2],
- 16: [2, 2, 3, 3, 3],
- 19: [2, 2, 4, 4, 4]
- }
- assert self.layers in self.vgg_configure.keys(), \
- "supported layers are {} but input layer is {}".format(
- self.vgg_configure.keys(), layers)
- self.groups = self.vgg_configure[self.layers]
- self._conv_block_1 = ConvBlock(3, 64, self.groups[0], name="conv1_")
- self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_")
- self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_")
- self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_")
- self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_")
- for idx, block in enumerate([
- self._conv_block_1, self._conv_block_2, self._conv_block_3,
- self._conv_block_4, self._conv_block_5
- ]):
- if self.stop_grad_layers >= idx + 1:
- for param in block.parameters():
- param.trainable = False
- self._drop = Dropout(p=0.5, mode="downscale_in_infer")
- self._fc1 = Linear(
- 7 * 7 * 512,
- 4096,
- weight_attr=ParamAttr(name="fc6_weights"),
- bias_attr=ParamAttr(name="fc6_offset"))
- self._fc2 = Linear(
- 4096,
- 4096,
- weight_attr=ParamAttr(name="fc7_weights"),
- bias_attr=ParamAttr(name="fc7_offset"))
- self._out = Linear(
- 4096,
- class_dim,
- weight_attr=ParamAttr(name="fc8_weights"),
- bias_attr=ParamAttr(name="fc8_offset"))
- def forward(self, inputs):
- x = self._conv_block_1(inputs)
- x = self._conv_block_2(x)
- x = self._conv_block_3(x)
- x = self._conv_block_4(x)
- x = self._conv_block_5(x)
- x = paddle.flatten(x, start_axis=1, stop_axis=-1)
- x = self._fc1(x)
- x = F.relu(x)
- x = self._drop(x)
- x = self._fc2(x)
- x = F.relu(x)
- x = self._drop(x)
- x = self._out(x)
- return x
- def VGG11(**args):
- model = VGGNet(layers=11, **args)
- return model
- def VGG13(**args):
- model = VGGNet(layers=13, **args)
- return model
- def VGG16(**args):
- model = VGGNet(layers=16, **args)
- return model
- def VGG19(**args):
- model = VGGNet(layers=19, **args)
- return model
|