| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import paddle
- import paddle.nn as nn
- from paddle.nn.initializer import TruncatedNormal, Constant
- __all__ = [
- "VisionTransformer", "ViT_small_patch16_224", "ViT_base_patch16_224",
- "ViT_base_patch16_384", "ViT_base_patch32_384", "ViT_large_patch16_224",
- "ViT_large_patch16_384", "ViT_large_patch32_384", "ViT_huge_patch16_224",
- "ViT_huge_patch32_384"
- ]
- trunc_normal_ = TruncatedNormal(std=.02)
- zeros_ = Constant(value=0.)
- ones_ = Constant(value=1.)
- def to_2tuple(x):
- return tuple([x] * 2)
- def drop_path(x, drop_prob=0., training=False):
- """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
- the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
- See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
- """
- if drop_prob == 0. or not training:
- return x
- keep_prob = paddle.to_tensor(1 - drop_prob)
- shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
- random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
- random_tensor = paddle.floor(random_tensor) # binarize
- output = x.divide(keep_prob) * random_tensor
- return output
- class DropPath(nn.Layer):
- """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
- """
- def __init__(self, drop_prob=None):
- super(DropPath, self).__init__()
- self.drop_prob = drop_prob
- def forward(self, x):
- return drop_path(x, self.drop_prob, self.training)
- class Identity(nn.Layer):
- def __init__(self):
- super(Identity, self).__init__()
- def forward(self, input):
- return input
- class Mlp(nn.Layer):
- def __init__(self,
- in_features,
- hidden_features=None,
- out_features=None,
- act_layer=nn.GELU,
- drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop = nn.Dropout(drop)
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop(x)
- x = self.fc2(x)
- x = self.drop(x)
- return x
- class Attention(nn.Layer):
- def __init__(self,
- dim,
- num_heads=8,
- qkv_bias=False,
- qk_scale=None,
- attn_drop=0.,
- proj_drop=0.):
- super().__init__()
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = qk_scale or head_dim**-0.5
- self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- def forward(self, x):
- # B= paddle.shape(x)[0]
- N, C = x.shape[1:]
- qkv = self.qkv(x).reshape((-1, N, 3, self.num_heads, C //
- self.num_heads)).transpose((2, 0, 3, 1, 4))
- q, k, v = qkv[0], qkv[1], qkv[2]
- attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale
- attn = nn.functional.softmax(attn, axis=-1)
- attn = self.attn_drop(attn)
- x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
- class Block(nn.Layer):
- def __init__(self,
- dim,
- num_heads,
- mlp_ratio=4.,
- qkv_bias=False,
- qk_scale=None,
- drop=0.,
- attn_drop=0.,
- drop_path=0.,
- act_layer=nn.GELU,
- norm_layer='nn.LayerNorm',
- epsilon=1e-5):
- super().__init__()
- self.norm1 = eval(norm_layer)(dim, epsilon=epsilon)
- self.attn = Attention(
- dim,
- num_heads=num_heads,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- attn_drop=attn_drop,
- proj_drop=drop)
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
- self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
- self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim,
- hidden_features=mlp_hidden_dim,
- act_layer=act_layer,
- drop=drop)
- def forward(self, x):
- x = x + self.drop_path(self.attn(self.norm1(x)))
- x = x + self.drop_path(self.mlp(self.norm2(x)))
- return x
- class PatchEmbed(nn.Layer):
- """ Image to Patch Embedding
- """
- def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
- super().__init__()
- img_size = to_2tuple(img_size)
- patch_size = to_2tuple(patch_size)
- num_patches = (img_size[1] // patch_size[1]) * \
- (img_size[0] // patch_size[0])
- self.img_size = img_size
- self.patch_size = patch_size
- self.num_patches = num_patches
- self.proj = nn.Conv2D(
- in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
- def forward(self, x):
- B, C, H, W = x.shape
- assert H == self.img_size[0] and W == self.img_size[1], \
- "Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
- x = self.proj(x).flatten(2).transpose((0, 2, 1))
- return x
- class VisionTransformer(nn.Layer):
- """ Vision Transformer with support for patch input
- """
- def __init__(self,
- img_size=224,
- patch_size=16,
- in_chans=3,
- class_dim=1000,
- embed_dim=768,
- depth=12,
- num_heads=12,
- mlp_ratio=4,
- qkv_bias=False,
- qk_scale=None,
- drop_rate=0.,
- attn_drop_rate=0.,
- drop_path_rate=0.,
- norm_layer='nn.LayerNorm',
- epsilon=1e-5,
- **args):
- super().__init__()
- self.class_dim = class_dim
- self.num_features = self.embed_dim = embed_dim
- self.patch_embed = PatchEmbed(
- img_size=img_size,
- patch_size=patch_size,
- in_chans=in_chans,
- embed_dim=embed_dim)
- num_patches = self.patch_embed.num_patches
- self.pos_embed = self.create_parameter(
- shape=(1, num_patches + 1, embed_dim), default_initializer=zeros_)
- self.add_parameter("pos_embed", self.pos_embed)
- self.cls_token = self.create_parameter(
- shape=(1, 1, embed_dim), default_initializer=zeros_)
- self.add_parameter("cls_token", self.cls_token)
- self.pos_drop = nn.Dropout(p=drop_rate)
- dpr = np.linspace(0, drop_path_rate, depth)
- self.blocks = nn.LayerList([
- Block(
- dim=embed_dim,
- num_heads=num_heads,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- drop=drop_rate,
- attn_drop=attn_drop_rate,
- drop_path=dpr[i],
- norm_layer=norm_layer,
- epsilon=epsilon) for i in range(depth)
- ])
- self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon)
- # Classifier head
- self.head = nn.Linear(embed_dim,
- class_dim) if class_dim > 0 else Identity()
- trunc_normal_(self.pos_embed)
- trunc_normal_(self.cls_token)
- self.apply(self._init_weights)
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- trunc_normal_(m.weight)
- if isinstance(m, nn.Linear) and m.bias is not None:
- zeros_(m.bias)
- elif isinstance(m, nn.LayerNorm):
- zeros_(m.bias)
- ones_(m.weight)
- def forward_features(self, x):
- # B = x.shape[0]
- B = paddle.shape(x)[0]
- x = self.patch_embed(x)
- cls_tokens = self.cls_token.expand((B, -1, -1))
- x = paddle.concat((cls_tokens, x), axis=1)
- x = x + self.pos_embed
- x = self.pos_drop(x)
- for blk in self.blocks:
- x = blk(x)
- x = self.norm(x)
- return x[:, 0]
- def forward(self, x):
- x = self.forward_features(x)
- x = self.head(x)
- return x
- def ViT_small_patch16_224(**kwargs):
- model = VisionTransformer(
- patch_size=16,
- embed_dim=768,
- depth=8,
- num_heads=8,
- mlp_ratio=3,
- qk_scale=768**-0.5,
- **kwargs)
- return model
- def ViT_base_patch16_224(**kwargs):
- model = VisionTransformer(
- patch_size=16,
- embed_dim=768,
- depth=12,
- num_heads=12,
- mlp_ratio=4,
- qkv_bias=True,
- epsilon=1e-6,
- **kwargs)
- return model
- def ViT_base_patch16_384(**kwargs):
- model = VisionTransformer(
- img_size=384,
- patch_size=16,
- embed_dim=768,
- depth=12,
- num_heads=12,
- mlp_ratio=4,
- qkv_bias=True,
- epsilon=1e-6,
- **kwargs)
- return model
- def ViT_base_patch32_384(**kwargs):
- model = VisionTransformer(
- img_size=384,
- patch_size=32,
- embed_dim=768,
- depth=12,
- num_heads=12,
- mlp_ratio=4,
- qkv_bias=True,
- epsilon=1e-6,
- **kwargs)
- return model
- def ViT_large_patch16_224(**kwargs):
- model = VisionTransformer(
- patch_size=16,
- embed_dim=1024,
- depth=24,
- num_heads=16,
- mlp_ratio=4,
- qkv_bias=True,
- epsilon=1e-6,
- **kwargs)
- return model
- def ViT_large_patch16_384(**kwargs):
- model = VisionTransformer(
- img_size=384,
- patch_size=16,
- embed_dim=1024,
- depth=24,
- num_heads=16,
- mlp_ratio=4,
- qkv_bias=True,
- epsilon=1e-6,
- **kwargs)
- return model
- def ViT_large_patch32_384(**kwargs):
- model = VisionTransformer(
- img_size=384,
- patch_size=32,
- embed_dim=1024,
- depth=24,
- num_heads=16,
- mlp_ratio=4,
- qkv_bias=True,
- epsilon=1e-6,
- **kwargs)
- return model
- def ViT_huge_patch16_224(**kwargs):
- model = VisionTransformer(
- patch_size=16,
- embed_dim=1280,
- depth=32,
- num_heads=16,
- mlp_ratio=4,
- **kwargs)
- return model
- def ViT_huge_patch32_384(**kwargs):
- model = VisionTransformer(
- img_size=384,
- patch_size=32,
- embed_dim=1280,
- depth=32,
- num_heads=16,
- mlp_ratio=4,
- **kwargs)
- return model
|