| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import six
- import types
- from difflib import SequenceMatcher
- from . import architectures
- def get_architectures():
- """
- get all of model architectures
- """
- names = []
- for k, v in architectures.__dict__.items():
- if isinstance(v, (types.FunctionType, six.class_types)):
- names.append(k)
- return names
- def get_blacklist_model_in_static_mode():
- from paddlex.ppcls.modeling.architectures import distilled_vision_transformer
- from paddlex.ppcls.modeling.architectures import vision_transformer
- blacklist = distilled_vision_transformer.__all__ + vision_transformer.__all__
- return blacklist
- def similar_architectures(name='', names=[], thresh=0.1, topk=10):
- """
- inferred similar architectures
- """
- scores = []
- for idx, n in enumerate(names):
- if n.startswith('__'):
- continue
- score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
- if score > thresh:
- scores.append((idx, score))
- scores.sort(key=lambda x: x[1], reverse=True)
- similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
- return similar_names
|