face_head.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import paddle
  15. import paddle.nn as nn
  16. import paddle.nn.functional as F
  17. from paddlex.ppdet.core.workspace import register
  18. from paddle.regularizer import L2Decay
  19. from paddle import ParamAttr
  20. from ..layers import AnchorGeneratorSSD
  21. @register
  22. class FaceHead(nn.Layer):
  23. """
  24. Head block for Face detection network
  25. Args:
  26. num_classes (int): Number of output classes.
  27. in_channels (int): Number of input channels.
  28. anchor_generator(object): instance of anchor genertor method.
  29. kernel_size (int): kernel size of Conv2D in FaceHead.
  30. padding (int): padding of Conv2D in FaceHead.
  31. conv_decay (float): norm_decay (float): weight decay for conv layer weights.
  32. loss (object): loss of face detection model.
  33. """
  34. __shared__ = ['num_classes']
  35. __inject__ = ['anchor_generator', 'loss']
  36. def __init__(self,
  37. num_classes=80,
  38. in_channels=(96, 96),
  39. anchor_generator=AnchorGeneratorSSD().__dict__,
  40. kernel_size=3,
  41. padding=1,
  42. conv_decay=0.,
  43. loss='SSDLoss'):
  44. super(FaceHead, self).__init__()
  45. # add background class
  46. self.num_classes = num_classes + 1
  47. self.in_channels = in_channels
  48. self.anchor_generator = anchor_generator
  49. self.loss = loss
  50. if isinstance(anchor_generator, dict):
  51. self.anchor_generator = AnchorGeneratorSSD(**anchor_generator)
  52. self.num_priors = self.anchor_generator.num_priors
  53. self.box_convs = []
  54. self.score_convs = []
  55. for i, num_prior in enumerate(self.num_priors):
  56. box_conv_name = "boxes{}".format(i)
  57. box_conv = self.add_sublayer(
  58. box_conv_name,
  59. nn.Conv2D(
  60. in_channels=in_channels[i],
  61. out_channels=num_prior * 4,
  62. kernel_size=kernel_size,
  63. padding=padding))
  64. self.box_convs.append(box_conv)
  65. score_conv_name = "scores{}".format(i)
  66. score_conv = self.add_sublayer(
  67. score_conv_name,
  68. nn.Conv2D(
  69. in_channels=in_channels[i],
  70. out_channels=num_prior * self.num_classes,
  71. kernel_size=kernel_size,
  72. padding=padding))
  73. self.score_convs.append(score_conv)
  74. @classmethod
  75. def from_config(cls, cfg, input_shape):
  76. return {'in_channels': [i.channels for i in input_shape], }
  77. def forward(self, feats, image, gt_bbox=None, gt_class=None):
  78. box_preds = []
  79. cls_scores = []
  80. prior_boxes = []
  81. for feat, box_conv, score_conv in zip(feats, self.box_convs,
  82. self.score_convs):
  83. box_pred = box_conv(feat)
  84. box_pred = paddle.transpose(box_pred, [0, 2, 3, 1])
  85. box_pred = paddle.reshape(box_pred, [0, -1, 4])
  86. box_preds.append(box_pred)
  87. cls_score = score_conv(feat)
  88. cls_score = paddle.transpose(cls_score, [0, 2, 3, 1])
  89. cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes])
  90. cls_scores.append(cls_score)
  91. prior_boxes = self.anchor_generator(feats, image)
  92. if self.training:
  93. return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class,
  94. prior_boxes)
  95. else:
  96. return (box_preds, cls_scores), prior_boxes
  97. def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes):
  98. return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)