| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.regularizer import L2Decay
- from paddlex.ppdet.core.workspace import register
- def _de_sigmoid(x, eps=1e-7):
- x = paddle.clip(x, eps, 1. / eps)
- x = paddle.clip(1. / x - 1., eps, 1. / eps)
- x = -paddle.log(x)
- return x
- @register
- class YOLOv3Head(nn.Layer):
- __shared__ = ['num_classes', 'data_format']
- __inject__ = ['loss']
- def __init__(self,
- in_channels=[1024, 512, 256],
- anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
- [59, 119], [116, 90], [156, 198], [373, 326]],
- anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
- num_classes=80,
- loss='YOLOv3Loss',
- iou_aware=False,
- iou_aware_factor=0.4,
- data_format='NCHW'):
- """
- Head for YOLOv3 network
- Args:
- num_classes (int): number of foreground classes
- anchors (list): anchors
- anchor_masks (list): anchor masks
- loss (object): YOLOv3Loss instance
- iou_aware (bool): whether to use iou_aware
- iou_aware_factor (float): iou aware factor
- data_format (str): data format, NCHW or NHWC
- """
- super(YOLOv3Head, self).__init__()
- assert len(in_channels) > 0, "in_channels length should > 0"
- self.in_channels = in_channels
- self.num_classes = num_classes
- self.loss = loss
- self.iou_aware = iou_aware
- self.iou_aware_factor = iou_aware_factor
- self.parse_anchor(anchors, anchor_masks)
- self.num_outputs = len(self.anchors)
- self.data_format = data_format
- self.yolo_outputs = []
- for i in range(len(self.anchors)):
- if self.iou_aware:
- num_filters = len(self.anchors[i]) * (self.num_classes + 6)
- else:
- num_filters = len(self.anchors[i]) * (self.num_classes + 5)
- name = 'yolo_output.{}'.format(i)
- conv = nn.Conv2D(
- in_channels=self.in_channels[i],
- out_channels=num_filters,
- kernel_size=1,
- stride=1,
- padding=0,
- data_format=data_format,
- bias_attr=ParamAttr(regularizer=L2Decay(0.)))
- conv.skip_quant = True
- yolo_output = self.add_sublayer(name, conv)
- self.yolo_outputs.append(yolo_output)
- def parse_anchor(self, anchors, anchor_masks):
- self.anchors = [[anchors[i] for i in mask] for mask in anchor_masks]
- self.mask_anchors = []
- anchor_num = len(anchors)
- for masks in anchor_masks:
- self.mask_anchors.append([])
- for mask in masks:
- assert mask < anchor_num, "anchor mask index overflow"
- self.mask_anchors[-1].extend(anchors[mask])
- def forward(self, feats, targets=None):
- assert len(feats) == len(self.anchors)
- yolo_outputs = []
- for i, feat in enumerate(feats):
- yolo_output = self.yolo_outputs[i](feat)
- if self.data_format == 'NHWC':
- yolo_output = paddle.transpose(yolo_output, [0, 3, 1, 2])
- yolo_outputs.append(yolo_output)
- if self.training:
- return self.loss(yolo_outputs, targets, self.anchors)
- else:
- if self.iou_aware:
- y = []
- for i, out in enumerate(yolo_outputs):
- na = len(self.anchors[i])
- ioup, x = out[:, 0:na, :, :], out[:, na:, :, :]
- b, c, h, w = x.shape
- no = c // na
- x = x.reshape((b, na, no, h * w))
- ioup = ioup.reshape((b, na, 1, h * w))
- obj = x[:, :, 4:5, :]
- ioup = F.sigmoid(ioup)
- obj = F.sigmoid(obj)
- obj_t = (obj**(1 - self.iou_aware_factor)) * (
- ioup**self.iou_aware_factor)
- obj_t = _de_sigmoid(obj_t)
- loc_t = x[:, :, :4, :]
- cls_t = x[:, :, 5:, :]
- y_t = paddle.concat([loc_t, obj_t, cls_t], axis=2)
- y_t = y_t.reshape((b, c, h, w))
- y.append(y_t)
- return y
- else:
- return yolo_outputs
- @classmethod
- def from_config(cls, cfg, input_shape):
- return {'in_channels': [i.channels for i in input_shape], }
|