| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import cv2
- import numpy as np
- def tlwhs_to_tlbrs(tlwhs):
- tlbrs = np.copy(tlwhs)
- if len(tlbrs) == 0:
- return tlbrs
- tlbrs[:, 2] += tlwhs[:, 0]
- tlbrs[:, 3] += tlwhs[:, 1]
- return tlbrs
- def get_color(idx):
- idx = idx * 3
- color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)
- return color
- def resize_image(image, max_size=800):
- if max(image.shape[:2]) > max_size:
- scale = float(max_size) / max(image.shape[:2])
- image = cv2.resize(image, None, fx=scale, fy=scale)
- return image
- def plot_tracking(image,
- tlwhs,
- obj_ids,
- scores=None,
- frame_id=0,
- fps=0.,
- ids2=None):
- im = np.ascontiguousarray(np.copy(image))
- im_h, im_w = im.shape[:2]
- top_view = np.zeros([im_w, im_w, 3], dtype=np.uint8) + 255
- text_scale = max(1, image.shape[1] / 1600.)
- text_thickness = 2
- line_thickness = max(1, int(image.shape[1] / 500.))
- radius = max(5, int(im_w / 140.))
- cv2.putText(
- im,
- 'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)),
- (0, int(15 * text_scale)),
- cv2.FONT_HERSHEY_PLAIN,
- text_scale, (0, 0, 255),
- thickness=2)
- for i, tlwh in enumerate(tlwhs):
- x1, y1, w, h = tlwh
- intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h)))
- obj_id = int(obj_ids[i])
- id_text = '{}'.format(int(obj_id))
- if ids2 is not None:
- id_text = id_text + ', {}'.format(int(ids2[i]))
- _line_thickness = 1 if obj_id <= 0 else line_thickness
- color = get_color(abs(obj_id))
- cv2.rectangle(
- im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness)
- cv2.putText(
- im,
- id_text, (intbox[0], intbox[1] + 30),
- cv2.FONT_HERSHEY_PLAIN,
- text_scale, (0, 0, 255),
- thickness=text_thickness)
- return im
- def plot_trajectory(image, tlwhs, track_ids):
- image = image.copy()
- for one_tlwhs, track_id in zip(tlwhs, track_ids):
- color = get_color(int(track_id))
- for tlwh in one_tlwhs:
- x1, y1, w, h = tuple(map(int, tlwh))
- cv2.circle(
- image, (int(x1 + 0.5 * w), int(y1 + h)), 2, color, thickness=2)
- return image
- def plot_detections(image, tlbrs, scores=None, color=(255, 0, 0), ids=None):
- im = np.copy(image)
- text_scale = max(1, image.shape[1] / 800.)
- thickness = 2 if text_scale > 1.3 else 1
- for i, det in enumerate(tlbrs):
- x1, y1, x2, y2 = np.asarray(det[:4], dtype=np.int)
- if len(det) >= 7:
- label = 'det' if det[5] > 0 else 'trk'
- if ids is not None:
- text = '{}# {:.2f}: {:d}'.format(label, det[6], ids[i])
- cv2.putText(
- im,
- text, (x1, y1 + 30),
- cv2.FONT_HERSHEY_PLAIN,
- text_scale, (0, 255, 255),
- thickness=thickness)
- else:
- text = '{}# {:.2f}'.format(label, det[6])
- if scores is not None:
- text = '{:.2f}'.format(scores[i])
- cv2.putText(
- im,
- text, (x1, y1 + 30),
- cv2.FONT_HERSHEY_PLAIN,
- text_scale, (0, 255, 255),
- thickness=thickness)
- cv2.rectangle(im, (x1, y1), (x2, y2), color, 2)
- return im
|