| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddlex.ppdet.core.workspace import register
- from paddlex.ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly, rbox2poly
- from paddlex.ppdet.modeling.layers import TTFBox
- try:
- from collections.abc import Sequence
- except Exception:
- from collections import Sequence
- __all__ = [
- 'BBoxPostProcess',
- 'MaskPostProcess',
- 'FCOSPostProcess',
- 'S2ANetBBoxPostProcess',
- 'JDEBBoxPostProcess',
- 'CenterNetPostProcess',
- ]
- @register
- class BBoxPostProcess(object):
- __shared__ = ['num_classes']
- __inject__ = ['decode', 'nms']
- def __init__(self, num_classes=80, decode=None, nms=None):
- super(BBoxPostProcess, self).__init__()
- self.num_classes = num_classes
- self.decode = decode
- self.nms = nms
- def __call__(self, head_out, rois, im_shape, scale_factor):
- """
- Decode the bbox and do NMS if needed.
- Args:
- head_out (tuple): bbox_pred and cls_prob of bbox_head output.
- rois (tuple): roi and rois_num of rpn_head output.
- im_shape (Tensor): The shape of the input image.
- scale_factor (Tensor): The scale factor of the input image.
- Returns:
- bbox_pred (Tensor): The output prediction with shape [N, 6], including
- labels, scores and bboxes. The size of bboxes are corresponding
- to the input image, the bboxes may be used in other branch.
- bbox_num (Tensor): The number of prediction boxes of each batch with
- shape [1], and is N.
- """
- if self.nms is not None:
- bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
- bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes)
- else:
- bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
- scale_factor)
- return bbox_pred, bbox_num
- def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
- """
- Rescale, clip and filter the bbox from the output of NMS to
- get final prediction.
-
- Notes:
- Currently only support bs = 1.
- Args:
- bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
- and NMS, including labels, scores and bboxes.
- bbox_num (Tensor): The number of prediction boxes of each batch with
- shape [1], and is N.
- im_shape (Tensor): The shape of the input image.
- scale_factor (Tensor): The scale factor of the input image.
- Returns:
- pred_result (Tensor): The final prediction results with shape [N, 6]
- including labels, scores and bboxes.
- """
- if bboxes.shape[0] == 0:
- bboxes = paddle.to_tensor(
- np.array(
- [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
- bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
- origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
- origin_shape_list = []
- scale_factor_list = []
- # scale_factor: scale_y, scale_x
- for i in range(bbox_num.shape[0]):
- expand_shape = paddle.expand(origin_shape[i:i + 1, :],
- [bbox_num[i], 2])
- scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
- scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
- expand_scale = paddle.expand(scale, [bbox_num[i], 4])
- origin_shape_list.append(expand_shape)
- scale_factor_list.append(expand_scale)
- self.origin_shape_list = paddle.concat(origin_shape_list)
- scale_factor_list = paddle.concat(scale_factor_list)
- # bboxes: [N, 6], label, score, bbox
- pred_label = bboxes[:, 0:1]
- pred_score = bboxes[:, 1:2]
- pred_bbox = bboxes[:, 2:]
- # rescale bbox to original image
- scaled_bbox = pred_bbox / scale_factor_list
- origin_h = self.origin_shape_list[:, 0]
- origin_w = self.origin_shape_list[:, 1]
- zeros = paddle.zeros_like(origin_h)
- # clip bbox to [0, original_size]
- x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
- y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
- x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
- y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
- pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
- # filter empty bbox
- keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
- keep_mask = paddle.unsqueeze(keep_mask, [1])
- pred_label = paddle.where(keep_mask, pred_label,
- paddle.ones_like(pred_label) * -1)
- pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
- return pred_result
- def get_origin_shape(self, ):
- return self.origin_shape_list
- @register
- class MaskPostProcess(object):
- def __init__(self, binary_thresh=0.5):
- super(MaskPostProcess, self).__init__()
- self.binary_thresh = binary_thresh
- def paste_mask(self, masks, boxes, im_h, im_w):
- """
- Paste the mask prediction to the original image.
- """
- x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
- masks = paddle.unsqueeze(masks, [0, 1])
- img_y = paddle.arange(0, im_h, dtype='float32') + 0.5
- img_x = paddle.arange(0, im_w, dtype='float32') + 0.5
- img_y = (img_y - y0) / (y1 - y0) * 2 - 1
- img_x = (img_x - x0) / (x1 - x0) * 2 - 1
- img_x = paddle.unsqueeze(img_x, [1])
- img_y = paddle.unsqueeze(img_y, [2])
- N = boxes.shape[0]
- gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]])
- gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]])
- grid = paddle.stack([gx, gy], axis=3)
- img_masks = F.grid_sample(masks, grid, align_corners=False)
- return img_masks[:, 0]
- def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
- """
- Decode the mask_out and paste the mask to the origin image.
- Args:
- mask_out (Tensor): mask_head output with shape [N, 28, 28].
- bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
- and NMS, including labels, scores and bboxes.
- bbox_num (Tensor): The number of prediction boxes of each batch with
- shape [1], and is N.
- origin_shape (Tensor): The origin shape of the input image, the tensor
- shape is [N, 2], and each row is [h, w].
- Returns:
- pred_result (Tensor): The final prediction mask results with shape
- [N, h, w] in binary mask style.
- """
- num_mask = mask_out.shape[0]
- origin_shape = paddle.cast(origin_shape, 'int32')
- # TODO: support bs > 1 and mask output dtype is bool
- pred_result = paddle.zeros(
- [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32')
- if bbox_num == 1 and bboxes[0][0] == -1:
- return pred_result
- # TODO: optimize chunk paste
- pred_result = []
- for i in range(bboxes.shape[0]):
- im_h, im_w = origin_shape[i][0], origin_shape[i][1]
- pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h,
- im_w)
- pred_mask = pred_mask >= self.binary_thresh
- pred_mask = paddle.cast(pred_mask, 'int32')
- pred_result.append(pred_mask)
- pred_result = paddle.concat(pred_result)
- return pred_result
- @register
- class FCOSPostProcess(object):
- __inject__ = ['decode', 'nms']
- def __init__(self, decode=None, nms=None):
- super(FCOSPostProcess, self).__init__()
- self.decode = decode
- self.nms = nms
- def __call__(self, fcos_head_outs, scale_factor):
- """
- Decode the bbox and do NMS in FCOS.
- """
- locations, cls_logits, bboxes_reg, centerness = fcos_head_outs
- bboxes, score = self.decode(locations, cls_logits, bboxes_reg,
- centerness, scale_factor)
- bbox_pred, bbox_num, _ = self.nms(bboxes, score)
- return bbox_pred, bbox_num
- @register
- class S2ANetBBoxPostProcess(nn.Layer):
- __shared__ = ['num_classes']
- __inject__ = ['nms']
- def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None):
- super(S2ANetBBoxPostProcess, self).__init__()
- self.num_classes = num_classes
- self.nms_pre = nms_pre
- self.min_bbox_size = min_bbox_size
- self.nms = nms
- self.origin_shape_list = []
- self.fake_pred_cls_score_bbox = paddle.to_tensor(
- np.array(
- [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
- dtype='float32'))
- self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
- def forward(self, pred_scores, pred_bboxes):
- """
- pred_scores : [N, M] score
- pred_bboxes : [N, 5] xc, yc, w, h, a
- im_shape : [N, 2] im_shape
- scale_factor : [N, 2] scale_factor
- """
- pred_ploys0 = rbox2poly(pred_bboxes)
- pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0)
- # pred_scores [NA, 16] --> [16, NA]
- pred_scores0 = paddle.transpose(pred_scores, [1, 0])
- pred_scores = paddle.unsqueeze(pred_scores0, axis=0)
- pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores,
- self.num_classes)
- # Prevent empty bbox_pred from decode or NMS.
- # Bboxes and score before NMS may be empty due to the score threshold.
- if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[
- 1] <= 1:
- pred_cls_score_bbox = self.fake_pred_cls_score_bbox
- bbox_num = self.fake_bbox_num
- pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10])
- return pred_cls_score_bbox, bbox_num
- def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
- """
- Rescale, clip and filter the bbox from the output of NMS to
- get final prediction.
- Args:
- bboxes(Tensor): bboxes [N, 10]
- bbox_num(Tensor): bbox_num
- im_shape(Tensor): [1 2]
- scale_factor(Tensor): [1 2]
- Returns:
- bbox_pred(Tensor): The output is the prediction with shape [N, 8]
- including labels, scores and bboxes. The size of
- bboxes are corresponding to the original image.
- """
- origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
- origin_shape_list = []
- scale_factor_list = []
- # scale_factor: scale_y, scale_x
- for i in range(bbox_num.shape[0]):
- expand_shape = paddle.expand(origin_shape[i:i + 1, :],
- [bbox_num[i], 2])
- scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
- scale = paddle.concat([
- scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
- scale_y
- ])
- expand_scale = paddle.expand(scale, [bbox_num[i], 8])
- origin_shape_list.append(expand_shape)
- scale_factor_list.append(expand_scale)
- origin_shape_list = paddle.concat(origin_shape_list)
- scale_factor_list = paddle.concat(scale_factor_list)
- # bboxes: [N, 10], label, score, bbox
- pred_label_score = bboxes[:, 0:2]
- pred_bbox = bboxes[:, 2:]
- # rescale bbox to original image
- pred_bbox = pred_bbox.reshape([-1, 8])
- scaled_bbox = pred_bbox / scale_factor_list
- origin_h = origin_shape_list[:, 0]
- origin_w = origin_shape_list[:, 1]
- bboxes = scaled_bbox
- zeros = paddle.zeros_like(origin_h)
- x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros)
- y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros)
- x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros)
- y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros)
- x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros)
- y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros)
- x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros)
- y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros)
- pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1)
- pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1)
- return pred_result
- @register
- class JDEBBoxPostProcess(BBoxPostProcess):
- def __call__(self, head_out, anchors):
- """
- Decode the bbox and do NMS for JDE model.
- Args:
- head_out (list): Bbox_pred and cls_prob of bbox_head output.
- anchors (list): Anchors of JDE model.
- Returns:
- boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'.
- bbox_pred (Tensor): The output is the prediction with shape [N, 6]
- including labels, scores and bboxes.
- bbox_num (Tensor): The number of prediction of each batch with shape [N].
- nms_keep_idx (Tensor): The index of kept bboxes after NMS.
- """
- boxes_idx, bboxes, score = self.decode(head_out, anchors)
- bbox_pred, bbox_num, nms_keep_idx = self.nms(bboxes, score,
- self.num_classes)
- if bbox_pred.shape[0] == 0:
- bbox_pred = paddle.to_tensor(
- np.array(
- [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
- bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
- nms_keep_idx = paddle.to_tensor(np.array([[0]], dtype='int32'))
- return boxes_idx, bbox_pred, bbox_num, nms_keep_idx
- @register
- class CenterNetPostProcess(TTFBox):
- """
- Postprocess the model outputs to get final prediction:
- 1. Do NMS for heatmap to get top `max_per_img` bboxes.
- 2. Decode bboxes using center offset and box size.
- 3. Rescale decoded bboxes reference to the origin image shape.
- Args:
- max_per_img(int): the maximum number of predicted objects in a image,
- 500 by default.
- down_ratio(int): the down ratio from images to heatmap, 4 by default.
- regress_ltrb (bool): whether to regress left/top/right/bottom or
- width/height for a box, true by default.
- for_mot (bool): whether return other features used in tracking model.
- """
- __shared__ = ['down_ratio']
- def __init__(self,
- max_per_img=500,
- down_ratio=4,
- regress_ltrb=True,
- for_mot=False):
- super(TTFBox, self).__init__()
- self.max_per_img = max_per_img
- self.down_ratio = down_ratio
- self.regress_ltrb = regress_ltrb
- self.for_mot = for_mot
- def __call__(self, hm, wh, reg, im_shape, scale_factor):
- heat = self._simple_nms(hm)
- scores, inds, clses, ys, xs = self._topk(heat)
- scores = paddle.tensor.unsqueeze(scores, [1])
- clses = paddle.tensor.unsqueeze(clses, [1])
- reg_t = paddle.transpose(reg, [0, 2, 3, 1])
- # Like TTFBox, batch size is 1.
- # TODO: support batch size > 1
- reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]])
- reg = paddle.gather(reg, inds)
- xs = paddle.cast(xs, 'float32')
- ys = paddle.cast(ys, 'float32')
- xs = xs + reg[:, 0:1]
- ys = ys + reg[:, 1:2]
- wh_t = paddle.transpose(wh, [0, 2, 3, 1])
- wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]])
- wh = paddle.gather(wh, inds)
- if self.regress_ltrb:
- x1 = xs - wh[:, 0:1]
- y1 = ys - wh[:, 1:2]
- x2 = xs + wh[:, 2:3]
- y2 = ys + wh[:, 3:4]
- else:
- x1 = xs - wh[:, 0:1] / 2
- y1 = ys - wh[:, 1:2] / 2
- x2 = xs + wh[:, 0:1] / 2
- y2 = ys + wh[:, 1:2] / 2
- n, c, feat_h, feat_w = paddle.shape(hm)
- padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2
- padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2
- x1 = x1 * self.down_ratio
- y1 = y1 * self.down_ratio
- x2 = x2 * self.down_ratio
- y2 = y2 * self.down_ratio
- x1 = x1 - padw
- y1 = y1 - padh
- x2 = x2 - padw
- y2 = y2 - padh
- bboxes = paddle.concat([x1, y1, x2, y2], axis=1)
- scale_y = scale_factor[:, 0:1]
- scale_x = scale_factor[:, 1:2]
- scale_expand = paddle.concat(
- [scale_x, scale_y, scale_x, scale_y], axis=1)
- boxes_shape = paddle.shape(bboxes)
- boxes_shape.stop_gradient = True
- scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
- bboxes = paddle.divide(bboxes, scale_expand)
- if self.for_mot:
- results = paddle.concat([bboxes, scores, clses], axis=1)
- return results, inds
- else:
- results = paddle.concat([clses, scores, bboxes], axis=1)
- return results, paddle.shape(results)[0:1]
|